ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:135KB ,
资源ID:609834      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-609834-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2014届高三数学一轮复习课时跟踪检测 8.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2014届高三数学一轮复习课时跟踪检测 8.doc

1、课时跟踪检测(五十二)直线与圆、圆与圆的位置关系1(2012福建高考)直线xy20与圆x2y24相交于A,B两点,则弦AB的长度等于()A2B2C. D12(2012安徽高考)若直线xy10与圆(xa)2y22有公共点,则实数a的取值范围是()A3,1 B1,3C3,1 D(,31,)3已知圆C:(x1)2(y2)225及直线l:(2m1)x(m1)y7m4(mR),则直线l与圆C的位置关系是()A相离B相切C相交 D不确定4将直线2xy0沿x轴向左平移1个单位,所得直线与圆x2y22x4y0相切,则实数的值为()A3或7 B2或8C0或10 D1或115由直线yx1上的一点向圆(x3)2y2

2、1引切线,则切线长的最小值为()A1 B2C. D36(2012兰州模拟)若圆x2y2r2(r0)上仅有4个点到直线xy20的距离为1,则实数r的取值范围为()A(1,) B(1, 1)C(0, 1) D(0, 1)7(2013临沂模拟)已知点P(x,y)是直线kxy40(k0)上一动点,PA,PB是圆C:x2y22y0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k_.8(2013东北三校联考)若a,b,c是直角三角形ABC三边的长(c为斜边),则圆C:x2y24被直线l:axbyc0所截得的弦长为_9(2012江西高考)过直线xy20上点P作圆x2y21的两条切线,若两条切线

3、的夹角是60,则点P的坐标是_10(2012福州调研)已知M:x2(y2)21,Q是x轴上的动点,QA,QB分别切M于A,B两点(1)若|AB|,求|MQ|及直线MQ的方程;(2)求证:直线AB恒过定点11已知以点C(tR,t0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点(1)求证:AOB的面积为定值;(2)设直线2xy40与圆C交于点M、N,若|OM|ON|,求圆C的方程12(2012揭阳调研)已知点M(3,1),直线axy40及圆(x1)2(y2)24.(1)求过M点的圆的切线方程;(2)若直线axy40与圆相切,求a的值;(3)若直线axy40与圆相交于A,B两点,且

4、弦AB的长为2,求a的值1(2012安徽模拟)已知圆x2y22x4y10关于直线2axby20(a,bR)对称,则ab的取值范围是()A.B.C. D.2(2012上海模拟)已知圆的方程为x2y26x8y0,a1,a2,a11是该圆过点(3,5)的11条弦的长,若数列a1,a2,a11成等差数列,则该等差数列公差的最大值是_3(2013江西六校联考)已知抛物线:C:y22px(p0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,圆M与y轴相切,过原点O作倾斜角为的直线n,交直线l于点A,交圆M于不同的两点O、B,且|AO|BO|2.(1)求圆M和抛物线C的方程;(2)若P为抛物线C上的动点

5、,求,的最小值;(3)过直线l上的动点Q向圆M作切线,切点分别为S、T,求证:直线ST恒过一个定点,并求该定点的坐标答 案课时跟踪检测(五十二)A级1选B因为圆心(0,0)到直线xy20的距离为1,所以AB22.2选C欲使直线xy10与圆(xa)2y22有公共点,只需使圆心到直线的距离小于等于圆的半径即可,即,化简得|a1|2,解得3a1.3选C注意到直线(2m1)x(m1)y7m4,即(xy4)m(2xy7)0恒过直线xy40与2xy70的交点(3,1),且点(3,1)与圆心(1,2)的距离等于(小于半径5),即点(3,1)位于圆C内,因此直线l与圆C的位置关系是相交4选A设切点为C(x,y

6、),则切点满足2(x1)y0,即2xy20.又圆x2y22x4y0的圆心为(1,2),半径为,由直线与圆相切的充要条件得,解得3或7.5.选C如图所示,设直线上一点P,切点为Q,圆心为M(3,0),则|PQ|即为切线长,MQ为圆M的半径,长度为1,|PQ|.要使|PQ|最小,即求|PM|的最小值,此题转化为求直线yx1上的点到圆心M的最小距离,设圆心M到直线yx1的距离为d,则d2,|PM|的最小值为2,|PQ|.6选A计算得圆心到直线l的距离为 1,如图直线l:xy20与圆相交,l1,l2与l平行,且与直线l的距离为1,故可以看出,圆的半径应该大于圆心到直线l2的距离 1.7解析:圆心C(0

7、,1)到l的距离d,所以四边形面积的最小值为22,解得k24,即k2.又k0,即k2.答案:28解析:由题意可知圆C:x2y24被直线l:axbyc0所截得的弦长为2 ,由于a2b2c2,所以所求弦长为2.答案:29解析:点P在直线xy20上,可设点P(x0,x02),且其中一个切点为M.两条切线的夹角为60,OPM30.故在RtOPM中,有OP2OM2.由两点间的距离公式得OP 2,解得x0.故点P的坐标是( , )答案:( , )10解:(1)设直线MQ交AB于点P,则|AP|,又|AM|1,APMQ,AMAQ,得|MP| ,又|MQ|,|MQ|3.设Q(x,0),而点M(0,2),由3,

8、得x,则Q点的坐标为(,0)或(,0)从而直线MQ的方程为2xy20或2xy20.(2)证明:设点Q(q,0),由几何性质,可知A,B两点在以QM为直径的圆上,此圆的方程为x(xq)y(y2)0,而线段AB是此圆与已知圆的公共弦,相减可得AB的方程为qx2y30,所以直线AB恒过定点.11解:(1)证明:由题设知,圆C的方程为(xt)22t2,化简得x22txy2y0,当y0时,x0或2t,则A(2t,0);当x0时,y0或,则B,所以SAOB|OA|OB|2t|4为定值(2)|OM|ON|,则原点O在MN的中垂线上,设MN的中点为H,则CHMN,C、H、O三点共线,则直线OC的斜率k,t2或

9、t2.圆心为C(2,1)或C(2,1),圆C的方程为(x2)2(y1)25或(x2)2(y1)25,由于当圆方程为(x2)2(y1)25时,直线2xy40到圆心的距离dr,此时不满足直线与圆相交,故舍去,圆C的方程为(x2)2(y1)25.12解:(1)圆心C(1,2),半径为r2,当直线的斜率不存在时,方程为x3.由圆心C(1,2)到直线x3的距离d312r知,此时,直线与圆相切当直线的斜率存在时,设方程为y1k(x3),即kxy13k0.由题意知2,解得k.方程为y1(x3),即3x4y50.故过M点的圆的切线方程为x3或3x4y50.(2)由题意有2,解得a0或a.(3)圆心到直线axy

10、40的距离为.224,解得a.B级1选A由题意知,圆的方程为(x1)2(y2)24,圆心坐标为(1,2),将圆心坐标代入直线方程得2a2b2,即ab1,又(ab)2a2b22ab4ab,所以ab.2解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为4,故公差最大为.答案:3解:(1)易得B(1,),A(1,),设圆M的方程为(xa)2y2a2(a0),将点B(1,)代入圆M的方程得a2,所以圆M的方程为(x2)2y24,因为点A(1,)在准线l上,所以1,p2,所以抛物线C的方程为y24x.(2)由(1)得,M(2,0),F(1,0),设点P(x,y),则(2x,y),(1x,y),又点P在抛物线y24x上,所以(2x)(1x)y2x23x24xx2x2,因为x0,所以2,即的最小值为2.(3)证明:设点Q(1,m),则|QS|QT|,以Q为圆心,为半径的圆的方程为(x1)2(ym)2m25,即x2y22x2my40, 又圆M的方程为(x2)2y24,即x2y24x0,由两式相减即得直线ST的方程3xmy20,显然直线ST恒过定点.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3