1、1.2复数的有关概念课后作业提升1适合x-3i=(8x-y)i的实数x,y的值为()A.x=0,y=3B.x=0,y=-3C.x=5,y=3D.x=3,y=0解析:根据复数相等的定义,可知答案:A2在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是()A.4+8iB.8+2iC.2+4iD.4+i解析:A(6,5),B(-2,3),由C为线段AB的中点,得C(2,4),所以C对应的复数为2+4i.答案:C3若复数z=a+4i(aR),且|z|=5,则a等于()A.3B.-3C.5D.3解析:由复数的模的定义,知|z|=5,所以a=3.答案:D4若
2、复数cos+isin和sin+icos相等,则的值为()A.B.C.2k+(kZ)D.k+(kZ)解析:根据复数相等的定义,知所以tan=1,=k+(kZ).答案:D5(2013湖北高考)i为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i,则z2=.解析:z1在复平面上的对应点为(2,-3),关于原点的对称点为(-2,3),故z2=-2+3i.答案:-2+3i6已知复数x2-5x+6+(x2-2x-3)i在复平面内对应的点在第三象限,则实数x的取值范围为.解析:由所以2x3.答案:2x37已知(2x-1)+i=y-(3-y)i,其中x,yR,求x与y.分析:因为x,yR,所以由两个复数相等的定义,可列出关于x,y的方程组,解方程组,可求出x,y的值.解:根据复数相等的充要条件得解得x=,y=4.8设z为纯虚数,且|z-1|=|-1+i|,求复数z.分析:本题主要考查复数的概念及模的定义,弄清这些基本概念,即可求解.解:z为纯虚数,可设z=ai(aR,且a0),则|z-1|=|ai-1|=,又|-1+i|=,且|z-1|=|-1+i|,.解得a=1,z=i.