1、第四节数列求和、数列的综合应用考点一数列求和1.(2012课标全国,12)数列an满足an1(1)nan2n1,则an的前60项和为()A.3 690 B.3 660 C.1 845 D.1 830解析an1(1)nan2n1,a21a1,a32a1,a47a1,a5a1,a69a1,a72a1,a815a1,a9a1,a1017a1,a112a1,a1223a1,a57a1,a58113a1,a592a1,a60119a1,a1a2a60(a1a2a3a4)(a5a6a7a8)(a57a58a59a60)1026422341 830.答案D2.(2015江苏,11)设数列an满足a11,且a
2、n1ann1(nN*),则数列前10项的和为_.解析a11,an1ann1,a2a12,a3a23,anan1n,将以上n1个式子相加得ana123n,即an,令bn,故bn2,故S10b1b2b102.答案3.(2015安徽,18)已知数列an是递增的等比数列,且a1a49,a2a38.(1)求数列an的通项公式;(2)设Sn为数列an的前n项和,bn,求数列bn的前n项和Tn.解(1)由题设知a1a4a2a38.又a1a49.可解得或(舍去).由a4a1q3得公比q2,故ana1qn12n1.(2)Sn2n1,又bn,所以Tnb1b2bn1.4.(2015福建,17)在等差数列an中,a2
3、4,a4a715.(1)求数列an的通项公式;(2)设bn2an2n,求b1b2b3b10的值.解(1)设等差数列an的公差为d,由已知得解得所以ana1(n1)dn2.(2)由(1)可得bn2nn,所以b1b2b3b10(21)(222)(233)(21010)(22223210)(12310)(2112)55211532 101.5.(2015天津,18)已知an是各项均为正数的等比数列,bn是等差数列,且a1b11,b2b32a3,a53b27.(1)求an和bn的通项公式;(2)设cnanbn,nN*,求数列cn的前n项和.解(1)设数列an的公比为q,数列bn的公差为d,由题意q0.
4、由已知,有消去d,整理得q42q280,又因为q0,解得q2,所以d2.所以数列an的通项公式为an2n1,nN*;数列bn的通项公式为bn2n1,nN*.(2)由(1)有cn(2n1)2n1,设cn的前n项和为Sn,则Sn120321522(2n3)2n2(2n1)2n1,2Sn121322523(2n3)2n1(2n1)2n,上述两式相减,得Sn122232n(2n1)2n2n13(2n1)2n(2n3)2n3,所以,Sn(2n3)2n3,nN*.6.(2015山东,19)已知数列an是首项为正数的等差数列,数列的前n项和为.(1)求数列an的通项公式;(2)设bn(an1)2an,求数列
5、bn的前n项和Tn.解(1)设数列an的公差为d,令n1,得,所以a1a23.令n2,得,所以a2a315.解得a11,d2,所以an2n1.(2)由(1)知bn2n22n1n4n,所以Tn141242n4n,所以4Tn142243n4n1,两式相减,得3Tn41424nn4n1n4n14n1.所以Tn4n1.7.(2015浙江,17)已知数列an和bn满足a12,b11,an12an(nN*),b1b2b3bnbn11(nN*).(1)求an与bn;(2)记数列anbn的前n项和为Tn,求Tn.解(1)由a12,an12an,得an2n(nN*).由题意知:当n1时,b1b21,故b22.当
6、n2时,bnbn1bn,整理得,所以bnn(nN*).(2)由(1)知anbnn2n.因此Tn2222323n2n,2Tn22223324n2n1,所以Tn2Tn222232nn2n1.故Tn(n1)2n12(nN*).8.(2015湖南,19)设数列an的前n项和为Sn,已知a11,a22,且an23SnSn13, nN*.(1)证明:an23an;(2)求Sn.(1)证明由条件,对任意nN*,有an23SnSn13,因而对任意nN*,n2,有an13Sn1Sn3.两式相减,得an2an13anan1,即an23an,n2.又a11,a22,所以a33S1S233a1(a1a2)33a1,故
7、对一切nN*,an23an.(2)解由(1)知,an0,所以3.于是数列a2n1是首项a11,公比为3等比数列;数列a2n是首项a22,公比为3的等比数列.因此a2n13n1,a2n23n1.于是S2na1a2a2n(a1a3a2n1)(a2a4a2n)(133n1)2(133n1)3(133n1).从而S2n1S2na2n23n1(53n21).综上所述,Sn9.(2014安徽,18)数列an满足a11,nan1(n1)ann(n1),nN*.(1)证明:数列是等差数列;(2)设bn3n,求数列bn的前n项和Sn.(1)证明由已知可得1,即1.所以是以1为首项,1为公差的等差数列.(2)解由
8、(1)得1(n1)1n,所以ann2.从而bnn3n.Sn131232333n3n,3Sn132233(n1)3nn3n1.得2Sn31323nn3n1n3n1.所以Sn.10.(2014新课标全国,17)已知an是递增的等差数列,a2,a4是方程x25x60的根.(1)求an的通项公式;(2)求数列的前n项和.解(1)方程x25x60的两根为2,3,由题意得a22,a43.设数列an的公差为d,则a4a22d,故d,从而a1.所以an的通项公式为ann1. (2) 设的前n项和为Sn,由(1)知,则Sn,Sn.两式相减得Sn.所以Sn2.11.(2014山东,19)在等差数列an中,已知公差
9、d2,a2是a1与a4的等比中项.(1)求数列an的通项公式;(2)设bna,记Tnb1b2b3b4(1)nbn,求Tn.解(1)由题意知(a1d)2a1(a13d),即(a12)2a1(a16),解得a12.所以数列an的通项公式为an2n.(2)由题意知bnan(n1).所以Tn122334(1)nn(n1).因为bn1bn2(n1),可得当n为偶数时,Tn(b1b2)(b3b4)(bn1bn)48122n,当n为奇数时,TnTn1(bn)n(n1).所以Tn12.(2013重庆,16)设数列an满足:a11,an13an,nN(1)求an的通项公式及前n项和Sn;(2)已知bn是等差数列
10、,Tn为其前n项和,且b1a2,b3a1a2a3,求T20.解(1)由题设知an是首项为1,公比为3的等比数列,所以an3n1,Sn(3n1).(2)b1a23,b313913,b3b1102d,所以公差d5,故T2020351 010.考点二数列的综合问题1.(2012四川,12)设函数f(x)(x3)3x1,an是公差不为0的等差数列,f(a1)f(a2)f(a7)14,则a1a2a7等于()A.0 B.7 C.14 D.21解析f(x)(x3)3x1(x3)3(x3)2,而yx3x是单调递增的奇函数,f(x)(x3)3(x3)2是关于点(3,2)成中心对称的增函数.又an是等差数列,f(
11、a1)f(a2)f(a7)1472,f(a4)2,即(a43)3(a43)22,a43,a1a2a77a421.答案D2.(2015浙江,10)已知an是等差数列,公差d不为零.若a2,a3,a7成等比数列,且2a1a21,则a1_,d_.解析因为a2,a3,a7成等比数列,所以aa2a7,即(a12d)2(a1d)(a16d),a1d,2a1a21,2a1a1d1即3a1d1,a1,d1.答案13.(2015北京,16)已知等差数列an满足a1a210,a4a32.(1)求an的通项公式;(2)设等比数列bn满足b2a3,b3a7;问:b6与数列an的第几项相等?解(1)设等差数列an的公差
12、为d.因为a4a32,所以d2.又因为a1a210,所以2a1d10,故a14.所以an42(n1)2n2(n1,2,).(2)设等比数列bn的公比为q.因为b2a38,b3a716,所以q2,b14.所以b64261128.由1282n2,得n63,所以bn与数列an的第63项相等.4.(2015重庆,18)已知等差数列an满足a32,前3项和S3.(1)求an的通项公式;(2)设等比数列bn满足b1a1,b4a15,求bn的前n项和Tn.解(1)设an的公差为d,则由已知条件得a12d2,3a1d,化简得a12d2,a1d,解得a11,d,故通项公式an1,即an.(2)由(1)得b11,
13、b4a158.设bn的公比为q,则q38,从而q2,故bn的前n项和Tn2n1.5.(2015广东,19)设数列an的前n项和为Sn,nN*.已知a11,a2,a3,且当n2时,4Sn25Sn8Sn1Sn1.(1)求a4的值;(2)证明:为等比数列;(3)求数列an的通项公式.(1)解当n2时,4S45S28S3S1,即4581,解得:a4.(2)证明因为4Sn25Sn8Sn1Sn1(n2),所以4Sn24Sn1SnSn14Sn14Sn(n2),即4an2an4an1(n2),因为4a3a14164a2,所以4an2an4an1,因为,所以数列是以a2a11为首项,公比为的等比数列.(3)解由
14、(2)知;数列是以a2a11为首项,公比为的等比数列,所以an1an,即4,所以数列是以2为首项,公差为4的等差数列,所以2(n1)44n2,即an(4n2)(2n1),所以数列an的通项公式是an(2n1).6.(2015湖北,19)设等差数列an的公差为d,前n项和为Sn,等比数列bn的公比为q,已知b1a1,b22,qd,S10100.(1) 求数列an,bn的通项公式;(2) 当d1时,记cn,求数列cn的前n项和Tn.解(1)由题意有即解得或故或(2)由d1,知an2n1,bn2n1,故cn,于是Tn1,Tn.可得Tn23,故Tn6.7.(2014广东,19)设各项均为正数的数列an
15、的前n项和为Sn,且Sn满足S(n2n3)Sn3(n2n)0,nN*.(1)求a1的值;(2)求数列an的通项公式;(3)证明:对一切正整数n,有.(1)解由题意知,S(n2n3)Sn3(n2n)0,nN*.令n1,有S(1213)S13(121)0,可得有SS160,解得S13或2,即a13或2,又an为正数,所以a12.(2)解由S(n2n3)Sn3(n2n)0,nN*可得,(Sn3)(Snn2n)0,则Snn2n或Sn3,又数列an的各项均为正数,所以Snn2n,Sn1(n1)2(n1),所以当n2时,anSnSn1n2n(n1)2(n1)2n.又a1221,所以an2n.(3)证明当n1时,成立;当n 2时,所以.所以对一切正整数n,有.