ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:2.29MB ,
资源ID:603424      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-603424-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(山东省烟台市中英文学校2020-2021学年高二上学期周测数学试卷 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

山东省烟台市中英文学校2020-2021学年高二上学期周测数学试卷 WORD版含答案.doc

1、数学 一、单选题1在四面体中,为中点,若,则( )A B CD2已知空间向量,若与垂直,则等于( )ABCD3直线x+(1+m)y=2-m和直线mx+2y+8=0平行,则m的值为( )A1BC1或D4已知圆内一点P(2,1),则过P点的最短弦所在的直线方程是( )A B C D5点在曲线上运动,且的最大值为,若,则的最小值为( )A1B2C3D46如图,矩形ABCD中,E为边AB的中点,将沿直线DE翻折成.在翻折过程中,直线与平面ABCD所成角的正弦值最大为( ) AB CD7若圆上仅有4个点到直线的距离为1,则实数的取值范围为( )ABCD8在平面直线坐标系中,定义为两点的“切比雪夫距离”,

2、又设点P及上任意一点Q,称的最小值为点P到直线的“切比雪夫距离”记作给出下列四个命题:( )对任意三点A、B、C,都有已知点P(3,1)和直线则到原点的“切比雪夫距离”等于的点的轨迹是正方形;定点动点满足则点P的轨迹与直线(为常数)有且仅有2个公共点其中真命题的个数是( )A4B3C2D1二、多选题9下面四个结论正确的是( )A向量,若,则B若空间四个点,则,三点共线C已知向量,若,则为钝角D任意向量,满足10如图,一个结晶体的形状为平行六面体,其中,以顶点A为端点的三条棱长都相等,且它们彼此的夹角都是60,下列说法中正确的是( )A BC向量与的夹角是60D与AC所成角的余弦值为11(多选题

3、)对于,下列说法正确的是( )A可看作点与点的距离 B可看作点与点的距离C可看作点与点的距离 D可看作点与点的距离12直线与曲线恰有一个交点,则实数b可取下列哪些值( )ABC1D三、填空题13如图,在正四棱柱中,底面边长为2,直线与平面所成角的正弦值为,则正四棱柱的高为_14如图,已知平面平面,且,则_.15两圆和的公共弦长为_16在中,B=,点为内切圆的圆心,过点作动直线与线段,都相交,将沿动直线翻折,使翻折后的点在平面上的射影落在直线上,点在直线上的射影为,则的最小值为_四、解答题17如图,四边形为正方形,平面,点,分别为,的中点()证明:平面;()求点到平面的距离18.如图,在直三棱柱

4、中,点、分别为和的中点.(1)证明:平面;(2)若,求二面角的余弦值.19已知平面内两点(1)求的中垂线方程;(2)求过点且与直线平行的直线的方程;(3)一束光线从点射向(2)中的直线,若反射光线过点,求反射光线所在的直线方程20已知圆C:,直线l过定点(1)若直线l与圆C相切,求直线l的方程;(2)若直线l与圆C相交于P,Q两点,求的面积的最大值,并求此时直线l的方程21已知,如图四棱锥中,底面为菱形,平面,E,M分别是BC,PD中点,点F在棱PC上移动.(1)证明无论点F在PC上如何移动,都有平面平面;(2)当直线AF与平面PCD所成的角最大时,求二面角的余弦值.22已知,为上三点.(1)

5、求的值;(2)若直线过点(0,2),求面积的最大值;(3)若为曲线上的动点,且,试问直线和直线的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.数学参考答案1D解:根据题意得,2A解:由空间向量,若与垂直,则,即,即,即,即,即,3A解:直线和直线平行,解得或,当时,两直线重合4B由题意可知,当过圆心且过点时所得弦为直径,当与这条直径垂直时所得弦长最短,圆心为,,则由两点间斜率公式可得,与垂直的直线斜率为, 则由点斜式可得过点的直线方程为,化简可得, 5A曲线可化为,表示圆心为,半径为的圆,可以看作点到点的距离的平方,圆上一点到的距离的最大值为,即点是直线与圆的离点最远的交点,直线的方

6、程为,由,解得或(舍去),当时,取得最大值,且,当且仅当,且,即时等号成立6A分别取DE,DC的中点O,F,则点A的轨迹是以AF为直径的圆,以为轴,过与平面垂直的直线为轴建立坐标系, 则,平面ABCD的其中一个法向量为= (0,0.1), 由,设,则,记直线与平面ABCD所成角为,则设,直线与平面ABCD所成角的正弦值最大为,7A解:作出到直线的距离为1的点的轨迹,得到与直线平行,且到直线的距离等于1的两条直线,圆的圆心为原点,原点到直线的距离为,两条平行线中与圆心距离较远的一条到原点的距离为,又圆上有4个点到直线的距离为1,两条平行线与圆有4个公共点,即它们都与圆相交由此可得圆的半径,即,实

7、数的取值范围是8A解:对任意三点、,若它们共线,设,、,如右图,结合三角形的相似可得,为,或,则,;若,或,对调,可得,;若,不共线,且三角形中为锐角或钝角,由矩形或矩形,;则对任意的三点,都有,;故正确;设点是直线上一点,且,可得,由,解得,即有,当时,取得最小值;由,解得或,即有,的范围是,无最值,综上可得,两点的“切比雪夫距离”的最小值为故正确;由题意,到原点的“切比雪夫距离” 等于的点设为,则,若,则;若,则,故所求轨迹是正方形,则正确;定点、,动点满足,可得不轴上,在线段间成立,可得,解得,由对称性可得也成立,即有两点满足条件;若在第一象限内,满足,即为,为射线,由对称性可得在第二象

8、限、第三象限和第四象限也有一条射线,则点的轨迹与直线为常数)有且仅有2个公共点故正确;综上可得,真命题的个数为4个,9AB由向量垂直的充要条件可得A正确;,即,三点共线,故B正确;当时,两个向量共线,夹角为,故C错误;由于向量的数量积运算不满足结合律,故D错误10AB以顶点A为端点的三条棱长都相等, 它们彼此的夹角都是60,可设棱长为1,则 而, A正确. =0,B正确.向量,显然 为等边三角形,则.向量与的夹角是 ,向量与的夹角是,则C不正确又, 则, ,D不正确.11BCD由题意,可得,可看作点与点的距离,可看作点与点的距离,可看作点与点的距离,故选项A不正确,12AC解:曲线,整理得,画

9、出直线与曲线的图象,如图,直线与曲线恰有一个交点,则 134解:以为坐标原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系,设,则,故,设平面的一个法向量为,则,可取,故,又直线与平面所成角的正弦值为,解得1413平面平面,,,15解:即圆心为,半径;得,即两圆公共弦方程为,圆心到直线的距离公共弦长为16 如图所示:,平面,三点共线,以分别为轴建立平面直角坐标系,则,设直线的方程为,由题意直线与线段都相交,当时,直线的方程为令,求得,又当时,点坐标为,综上.由点到直线的距离公式课计算得 即最小值为.17()见解析;().试题解析:()证明:取点是的中点,连接,则,且,且,且,四边形为平

10、行四边形,平面()解:由()知平面,点到平面的距离与到平面的距离是相等的,故转化为求点到平面的距离,设为利用等体积法:,即,181)详见解析;(2)(1)如图,作线段中点,连接、,是线段中点,点为线段的中点,是线段中点,点为线段的中点,三棱柱是直三棱柱,直线平面,直线平面,平面平面,平面,平面.(2)如图,以为原点、为轴、为轴、为轴构建空间直角坐标系,则,设是平面的法向量,则,即,令,则,设是平面的法向量,则,即,令,则,令二面角为,则,故结合图像易知,二面角的余弦值为.19(1);(2);(3).(1),的中点坐标为,的中垂线斜率为,由点斜式可得,的中垂线方程为;(2)由点斜式,直线的方程,

11、(3)设关于直线的对称点, 解得,由点斜式可得,整理得反射光线所在的直线方程为.20(1)或(1)若直线l1的斜率不存在,则直线l1:x1,符合题意. 若直线l1斜率存在,设直线l1的方程为,即由题意知,圆心(3,4)到已知直线l1的距离等于半径2,即: ,解之得 . 所求直线l1的方程是或.(2)直线与圆相交,斜率必定存在,且不为0, 设直线方程为,则圆心到直线l1的距离 又CPQ的面积 当d时,S取得最大值2. k1 或k7所求直线l1方程为 xy10或7xy70 .21(1)见解析;(2)(1)连接AC.底面ABCD为菱形,是正三角形,是BC中点,又,又平面,平面,又,平面,又平面,平面平面.(2)由(1)知,AE,AD,AP两两垂直,以AE,AD,AP所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,易知:,而且,设平面PCD的法向量,取,.根据题意,线面角当时,最大,此时F为PC的中点,即,.设平面AEF的法向量为,平面AEM的法向量为,解得,同理可得,二面角的平面角的余弦值为.22(1);(2);(3)定值为:.解:(1)为圆上,(2)由题意知直线的斜率存在,设直线的方程为,将代人得,令,则,当,即时面积取得最大值(3)设直线和直线的斜率之积为设,则,为圆上,化简得整理得,从而,又为曲线的动点展开得将代入得化简得将代人得,整理得,从而又

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3