收藏 分享(赏)

江苏省南京市金陵中学高中物理竞赛热学教程《4.10 天体的运动与能量》讲义 .doc

上传人:高**** 文档编号:603287 上传时间:2024-05-29 格式:DOC 页数:6 大小:159.50KB
下载 相关 举报
江苏省南京市金陵中学高中物理竞赛热学教程《4.10 天体的运动与能量》讲义 .doc_第1页
第1页 / 共6页
江苏省南京市金陵中学高中物理竞赛热学教程《4.10 天体的运动与能量》讲义 .doc_第2页
第2页 / 共6页
江苏省南京市金陵中学高中物理竞赛热学教程《4.10 天体的运动与能量》讲义 .doc_第3页
第3页 / 共6页
江苏省南京市金陵中学高中物理竞赛热学教程《4.10 天体的运动与能量》讲义 .doc_第4页
第4页 / 共6页
江苏省南京市金陵中学高中物理竞赛热学教程《4.10 天体的运动与能量》讲义 .doc_第5页
第5页 / 共6页
江苏省南京市金陵中学高中物理竞赛热学教程《4.10 天体的运动与能量》讲义 .doc_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、410天体的运动与能量4101、天体运动的机械能守恒二体系统的机械能E为系统的万有引力势能与各天体的动能之和。仅有一个天体在运动时,则E为系统的万有引力势能与其动能之和。由于没有其他外力作用,系统内万有引力属于保守力,故有机械能守恒,E为一恒量,如图4-10-1所示,设M天体不动,m天体绕M天体转动,则由机械动能守恒,有图4-10-1当运动天体背离不动天体运动时,不断增大,而将不断减小,可达无穷远处,此时而0,则应满足E0,即例如从地球发射人造卫星要挣脱地球束缚必有图4-10-2我们称=11.2km/s为第二宇宙速度,它恰为第一宇宙速度为倍。另外在上面的二体系统中,由于万有引力属于有心力,所以

2、对m而言,遵循角动量守恒 或 方向的夹角。它实质可变换得到开普勒第二定律,即行星与恒星连线在相等时间内扫过面积等。4102、天体运动的轨道与能量若M天体固定,m天体在万有引力作用下运动,其圆锥曲线可能是椭圆(包括圆)、抛物线或双曲线。i)椭圆轨道如图4-7-1所示,设椭圆轨道方程为 (ab)则椭圆长,短半轴为a、b,焦距,近地点速度,远地点速度,则有或由开普勒第二定律: 可解得代入E得ii)抛物线设抛物线方程为太阳在其焦点()处,则m在抛物线顶点处能量为可以证明抛物线顶点处曲率半径,则有得到图4-10-3抛物线轨道能量 iii)双曲线设双曲线方程为焦距,太阳位于焦点(C,0),星体m在双曲线正

3、半支上运动。如图4-10-3所示,其渐近线OE方程为y=bx/a,考虑m在D处与无穷远处关系,有考虑到当,运动方向逼近渐近线,焦点与渐近线距为故有 或 联解得双曲线轨道能量小结 椭圆轨道 抛物线轨道 双曲线轨道以下举一个例子质量为m的宇宙飞船绕地球中心0作圆周运动,已知地球半径为R,飞船轨道半径为2R。图4-10-4现要将飞船转移到另一个半径为4R的新轨道上,如图4-10-4所示,求(1)转移所需的最少能量;(2)如果转移是沿半椭圆双切轨道进行的,如图中的ACB所示,则飞船在两条轨道的交接处A和B的速度变化各为多少?解: (1)宇宙飞船在2R轨道上绕地球运动时,万有引力提供向心力,令其速度为,

4、乃有 故得 此时飞船的动能和引力势能分别为所以飞船在2R轨道上的机械能为同理可得飞船在4R轨道上的机械能为 以两轨道上飞船所具有的机械能比较,知其机械能的增量即为实现轨道转移所需的最少能量,即 (2)由(1)已得飞船在2R轨道上运行的速度为 同样可得飞船4R轨道上运行的速度为 设飞船沿图示半椭圆轨道ACB运行时,在A、B两点的速度分别为。则由开普勒第二定律可得 又由于飞船沿此椭圆轨道的一半运行中机械能守恒,故应有联立以上两式解之可得故得飞船在A、B两轨道交接处的速度变化量分别为 a图4-10-5 例如:三个钢球A、B、C由轻质的长为的硬杆连接,竖立在水平面上,如图4-10-5所示。已知三球质量

5、,距离杆处有一面竖直墙。因受微小扰动,两杆分别向两边滑动,使B球竖直位置下降。致使C球与墙面发生碰撞。设C球与墙面碰撞前后其速度大小不变,且所有摩擦不计,各球的直径都比小很多,求B球落地瞬间三球的速度大小。 解: (1)球碰墙前三球的位置 视A、B、C三者为一系统, A、C在水平面上滑动时,只要C不与墙面相碰,则此系图4-10-7统不受水平外力作用,此系统质心的水平坐标不发生变化。以图4-10-6表示C球刚好要碰墙前三球的位置,以表示此时BC杆与水平面间的夹角,则AB杆与水平面间的夹角也为,并令BA杆上的M点与系统质心的水平坐标相同,则应有故得 由上述知M点的水平坐标应与原来三秋所在的位置的水

6、平坐标相同,故知此刻M点与右侧墙面的距离即为,即M点与C球的水平距离为,由此有,即。由上式解得,故有 (2)求三球碰墙前的速度 由于碰墙前M点的水平坐标不变,则在A、C沿水平面滑动过程中的任何时刻,由于图中的几何约束,C点与M点的水平距离总等于A点与M点的水平距离的倍,可见任何时刻C点的水平速度大小总为A点水平速度大小的倍。以、分别表示图5-2-2中三球的速度,则有 又设沿BC方向的分量为,则由于和分别为杆BC两端的小球速度,则此两小球速度沿着杆方向的投影应该相等,即。再设沿BA方向的分量为,同上道理可得 注意到BA与BC两个方向刚好互相垂直,故得的大小为以两式带入上式,乃得 图4-10-8

7、由于系统与图5-2-1状态到图5-2-2状态的机械能守恒,乃有。以式代入上式。解方程知可得 (3)求C球在刚碰墙后三球的速度 如图4-10-8所示,由于C球与墙碰撞,导致C球的速度反向而大小不变,由于杆BC对碰撞作用力的传递,使B球的速度也随之变化,这一变化的结果是:B球速度沿CB方向的分量与C球速度沿CB方向的分量相等,即 由于BC杆只能传递沿其杆身方向的力,故B球在垂直于杆身方向(即BA方向)的速度不因碰撞而发生变化,A球的速度也不因碰撞而发生变化,即其仍为。故得此时B球速度沿BA方向的分量满足 , 乃得刚碰撞后B球速度大小为 (4)求B球落地时三球的速度大小 碰撞后,三球速度都有水平向左的分量,可见此后系统质心速度在水平方向的分量应该方向向左,且由于此后系统不受水平外力,则应维持不变。由上解得的三球速度,可得应该满足。以、诸式代入上式可解得 当B球落地时,A、B、C三小球均在同一水平线上,它们沿水平方向的速度相等,显然,这一速度也就是系统质心速度的水平分量。而B小球刚要落地时,A、C两球的速度均沿水平方向(即只有水平分量),B球的速度则还有竖直分量,以落表示此刻B球速度的大小。则由图4-10-8所示的状态到B小球刚要落地时,系统的机械能守恒,由此有以、各式代入上式可解得落= 综合上述得本题答案为:当B小球刚落地时,A、B、C三球的速度大小分别为、和。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3