ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:947.50KB ,
资源ID:602387      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-602387-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(吉林省桦甸市第四中学2013届高考数学一轮复习立体几何部分训练题(一).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

吉林省桦甸市第四中学2013届高考数学一轮复习立体几何部分训练题(一).doc

1、高考资源网() 您身边的高考专家吉林省桦甸市第四中学2013届高考数学一轮复习空间中的位置关系部分训练题(一)一、选择题1、(吉林理)已知三棱锥的所有顶点都在的球面上,是边长为的正三角形,为球的直径,且;则此棱锥的体积为( ) 2、(吉林文)平面截球O的球面所得圆的半径为1,球心O到平面的距离为,则此球的体积为 (A) (B)4 (C)4 (D)6二、填空题1、(安徽文)若四面体的三组对棱分别相等,即,则_(写出所有正确结论编号)。 四面体每组对棱相互垂直四面体每个面的面积相等从四面体每个顶点出发的三条棱两两夹角之和大于而小于连接四面体每组对棱中点的线段互相垂直平分DABC从四面体每个顶点出发

2、的三条棱的长可作为一个三角形的三边长2、(江苏)如图,在长方体中,则四棱锥的体积为 cm33、(辽宁理)已知正三棱锥ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为_。三、解答题1、(吉林文)如图,三棱柱ABCA1B1C1中,侧棱垂直底面,ACB=90,AC=BC=AA1,D是棱AA1的中点()证明:平面BDC1平面BDC()平面BDC1分此棱柱为两部分,求这两部分体积的比。2、(安徽文)如图,长方体中,底面是正方形,是的中点,是棱上任意一点。()证明: ;()如果=2,=,,,求 的长。3、(北京文)如图1,在中,分别为的中点,点为线段上

3、的一点,将沿折起到的位置,使,如图2。()求证:平面;()求证:;()线段上是否存在点,使平面?说明理由。4、(广东文)如下图所示,在四棱锥PABCD中, AB平面PAD,AB/CD,PDAD,E是PB中点,F是DC上的点,且DFAB,PH为PAD中AD边上的高。(1)证明:PH平面ABCD;(2)若PH1,AD,FC1,求三棱锥EBCF的体积;(3)证明:EF平面PAB答案:一、选择题1、选 的外接圆的半径,点到面的距离 为球的直径点到面的距离为 此棱锥的体积为 另:排除2、B二、填空题1、正确的是四面体每个面是全等三角形,面积相等 从四面体每个顶点出发的三条棱两两夹角之和等于 连接四面体每

4、组对棱中点构成菱形,线段互垂直平分 从四面体每个顶点出发的三条棱的长可作为一个三角形的三边长2、解析:.答案:6.3、因为在正三棱锥ABC中,PA,PB,PC两两互相垂直,所以可以把该正三棱锥看作为一个正方体的一部分,(如图所示),此正方体内接于球,正方体的体对角线为球的直径,球心为正方体对角线的中点。球心到截面ABC的距离为球的半径减去正三棱锥ABC在面ABC上的高。已知球的半径为,所以正方体的棱长为2,可求得正三棱锥ABC在面ABC上的高为,所以球心到截面ABC的距离为三、解答题1、2、(I)连接,共面 长方体中,底面是正方形 面 ()在矩形中, 得:3、4、(1)证明:平面,面,又平面,平面。(2)是中点点到面的距离,三棱锥的体积。(3)取的中点为,连接。,又平面,平面平面平面,又平面平面,平面面,点是棱的中点,又,得:平面。版权所有:高考资源网()版权所有:高考资源网()高考资源网版权所有 侵权必究

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3