1、高考资源网() 您身边的高考专家 2016-2017学年度第一学期汪清六中高三数学(理)10月考试题班级: 姓名:一、选择题1已知全集( )A BC D 2执行如图所示的程序框图,输出的s值为( )A-3 B- C D23若复数Z满足=i,其中i为虚数单位,则Z=( )(A)1-i (B)1+i (C)-1-i (D)-1+i4等比数列的前n项和为,且4,2,成等差数列。若=1,则=( )(A)7 (B)8 (3)15 (4)165. 平面向量a与b的夹角为, 则( ) A. B. C. 4 D.26. 要得到函数y=sin(4x-)的图像,只需要将函数y=sin4x的图像( )(A)向左平移
2、个单位(B)向右平移个单位(C)向左平移个单位(D)向右平移个单位 7在ABC中,已知8b5c,C2B,则cosC( )A. B C D.8某几何体的三视图如图所示,则该几何体的体积为 (A) (B) (C) (D)9. 已知函数的一部分图象如右图所示,如果,则( )A. B. C.D. 10. 已知数列的前项和为,,则(A) (B) (C) (D)11直线l平面,直线m平面,有下列四个命题 (1) (2) (3) (4) 其中正确的命题是 ( )A. (1)与(2) B. (2)与(4) C. (1)与(3) D. (3)与(4)12已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站
3、C的北偏东40,灯塔B在观察站C的南偏东60,则灯塔A在灯塔B的( )A、北偏东10 B、北偏西10 C、南偏东10 D、南偏西10二、填空题13设等差数列的前项和为,若则 . 14设的内角,所对的边分别为,. 若,则角 15已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是 16下列函数中,最小正周期为 且图象关于原点对称的函数是_. . , .三、解答题17.等差数列中,(I)求的通项公式;(II)设来源:学+科+网18. 在ABC中,角A、B、C对边分别为a、b、c且,(1)求sinB.(2)若b4,ac,求ABC的面积19. 如图,三棱柱中,=60.()证明;()
4、若平面平面,求直线 与平面所成角的正弦值。来源:Zxxk.Com20. 已知函数 (I)求的最小正周期和最大值; (II)讨论在上的单调性.21. 设为数列的前项和,已知:.(1)求,并求数列的通项公式(2)求数列的前项和.22. 如图,在直三棱柱中,是的中点(1)求证:平面;(2)求二面角的余弦值;一、选择题1 D 2 D 3 A 4 C 5 B 6 B 7 A 8 A 9 C 10 B 11 C 12 B 13 9 14 120O 15 32 16 17(I)设等差数列an的公差为da7=4,a19=2a9,a1+6d=4a1+18d=2(a1+8d)解得,a1=1,d=1/2an=1+(
5、n-1)/2=(n+1)/2(II)bn=1/ nan=2/n-2/(n+1)sn=2(1-1/2+.+1/n-1/n+1)=2(1-1/n+1)=2n/n+1来源:学科网ZXXK18解答:解:(1)由正弦定理,得sinBcosC+cosBsinC=3sinAcosBsin(B+C)=3sinAcosBA+B+C=180sinA=3sinAcosB0A180cosB=1/3sinB=(2)由余弦定理,cosB= a2+c2-b2 /2ac 得c2=24SABC=1/2 acsinB=819()取AB中点E,连结CE,AB=,=,是正三角形,AB, CA=CB, CEAB, =E,AB面, AB
6、; ()由()知ECAB,AB,又面ABC面,面ABC面=AB,EC面,EC,EA,EC,两两相互垂直,以E为坐标原点,的方向为轴正方向,|为单位长度,建立如图所示空间直角坐标系,有题设知A(1,0,0),(0,0),C(0,0,),B(1,0,0),则=(1,0,),=(1,0,),=(0,), 设=是平面的法向量,则,即,可取=(,1,-1),=,直线A1C 与平面BB1C1C所成角的正弦值为. 20f(x)=cosxsinx-3cos2x =sin(2x- /3)-3/2T= f(x)max=1-3/2来源:Zxxk.Com/6,5/12单调增5/12,2/3单调减21 解 (1)令得
7、因为 所以 令,得 ,来源:学|科|网当时,由 , ,两式相减得 ,即 .故数列是由首项为1,公比为2的等比数列,所以数列的通项公式为.(2)由(1)知,.记数列的前项和为.于是 , , -得 .22.证明:连接A1C,交AC1于点O,连接OD由ABC-A1B1C1是直三棱柱,得四边形ACC1A1为矩形,O为A1C的中点又D为BC中点,所以OD为A1BC中位线,所以A1BOD,因为OD平面ADC1,A1B平面ADC1,所以A1B平面ADC1(4分)()解:由ABC-A1B1C1是直三棱柱,且ABC=90,故BA,BC,BB1两两垂直如图建立空间直角坐标系B-xyz设BA=2,则B(0,0,0),C(2,0,0),A(0,2,0),C1(2,0,1),D(1,0,0)所以,设平面ADC1的法向量为=(x,y,z),则有所以取y=1,得=(2,1,-2)平面ADC的法向量为=(0,0,1)由二面角C1-AD-C是锐角,得(8分)所以二面角C1-AD-C的余弦值为版权所有:高考资源网()高考资源网版权所有 侵权必究