1、第三章442换底公式课时跟踪检测一、选择题1对于a0,a1,下列说法中,正确的是()若MN,则logaMlogaN;若logaMlogaN,则MN;若logaM2logaN2,则MN;若MN,则logaM2logaN2.A与B与CD解析:在中,当MN0时,logaM与logaN均无意义;在中,当logaMlogaN时,必有M0,N0,且MN;在中,当logaM2logaN2时,有M0,N0,且M2N2,即|M|N|,但未必有MN,例如M2,N2时;在中,若MN0,则logaM2与logaN2均无意义所以,只有成立答案:C2log227log34()AB2 C3D6解析:log227log346
2、.答案:D3若lg xlg ya,则lglg()A3aBa CaD解析:lg xlg ya,lglg3(lg xlg 2)3(lg ylg 2)3(lg xlg y)3a.答案:A4已知2lg(x2y)lg xlg y,则的值为()A1B4 C1或4D4或1解析:由题意得lg(x2y)2lg (xy),(x2y)2xy,x24xy4y2xy,x25xy4y20,(xy)(x4y)0,xy或x4y,又x2y,x4y,4.答案:B5计算:log62log618(log63)2的值为()A1B2 C3D4解析:log62log618(log63)2log62(log631)(log63)2log63
3、log62log62(log63)2log63(log62log63)log62log63log621.答案:A6. ()AlgB1 C1Dlg解析: lg 51|lg21|lg 51lg 21lg 102121.答案:C二、填空题7已知ln x2ln,则x_解析:ln x2ln 2ln x,2ln x2ln 2,2ln x2ln eln 2,2ln xln(2e2),ln xln(2e2)ln(e)xe.答案:e8若alog43,则4a4a_解析:alog43,4a4a4log434log433.答案:9设lg a,lg b是方程2x24x10的两个根,则的值等于_解析:由题意得lg alg
4、 b2,lg alg b,(lg alg b)2(lg alg b)24lg alg b224422.答案:2三、解答题10计算:272log23log22lg()解:272log23log22lg()332log23log223lg()2323(3)lg(64)99119.11设lg alg b2lg(a2b),求log4的值解:要使对数有意义,则a2b0.由lg alg b2lg(a2b),得lg(ab)lg(a2b)2,ab(a2b)2a24ab4b2,即a25ab4b20.两边同除以b2,得540,解得1(舍去)或4.log4log441.12(1)计算:(lg 5)2lg 2lg 5
5、0;(2)设3x4y36,求的值解:(1)原式(lg 5)2lg 2(lg 5lg 10)(lg 5)2lg 2lg 5lg 2lg 5(lg 2lg 5)lg 2lg 5lg 21.(2)由3x4y36,得xlog336,ylog436,从而2log363log364log36361.13若a,b是方程2(lg x)2lg x410的两个实根,求lg(ab)(loga blogb a)的值解:原方程可化为2(lg x)24lg x10,设tlg x,则原方程化为2t24t10.t1t22,t1t2.由已知a,b是原方程的两个根,则t1lg a,t2lg b,即lg alg b2,lg alg b,lg(ab)(logablogba)(lg alg b)(lg alg b)212.即lg(ab)(loga blogb a)12.