收藏 分享(赏)

广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc

上传人:高**** 文档编号:594927 上传时间:2024-05-29 格式:DOC 页数:34 大小:780.50KB
下载 相关 举报
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第1页
第1页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第2页
第2页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第3页
第3页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第4页
第4页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第5页
第5页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第6页
第6页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第7页
第7页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第8页
第8页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第9页
第9页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第10页
第10页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第11页
第11页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第12页
第12页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第13页
第13页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第14页
第14页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第15页
第15页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第16页
第16页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第17页
第17页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第18页
第18页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第19页
第19页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第20页
第20页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第21页
第21页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第22页
第22页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第23页
第23页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第24页
第24页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第25页
第25页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第26页
第26页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第27页
第27页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第28页
第28页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第29页
第29页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第30页
第30页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第31页
第31页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第32页
第32页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第33页
第33页 / 共34页
广东省深圳市2015届高考化学二模试卷 WORD版含解析.doc_第34页
第34页 / 共34页
亲,该文档总共34页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2015年广东省深圳市高考化学二模试卷一、选择题(共8小题,每小题4分,满分36分)1下列说法正确的是( )A漂白液中添加醋酸可提高漂白速率B石油裂化是为了除去石油中的杂质C淀粉溶液可鉴别加碘盐的真伪D蛋白质、淀粉、纤维素都能在人体内水解并提供能量2下列体系中,离子能大量共存的是( )A无色透明的酸性溶液:MnO4、K+、C1、SO42B使酚酞变红的溶液:K+、Na+、NO3、ClC滴加KSCN显红色的溶液:NH4+、K+、Cl、ID0.1 molL1NaHCO3溶液:Na+、Ba2+、NO3、OH3下列叙述和均正确且有因果关系的是( )选项叙述叙述A往AgNO3溶液中滴加氨水至过量,先有沉淀

2、后溶解AgOH是两性氢氧化物B常温下浓H2SO4能使铝钝化通常用铝槽车贮运浓H2SO4C硅的熔点高硬度大晶体硅可用做半导体材料DNO2溶于水生成HNO3NO2是酸性氧化物AABBCCDD4设NA为阿伏加德罗常数下列说法错误的是( )A一定条件下2 mol SO2和1 mol O2充分反应后,混合气体的分子总数大于2NAB常温常压下,64 g O2和O3混合气体中含有原子总数为4NAC1mol Cl2与NaOH溶液反应,转移的电子总数为2NAD标准状况下,22.4L N2含共用电子对数为3NA5常温下pH=1的乙酸溶液和pH=13的NaOH溶液,下列叙述中正确的是( )A乙酸溶液中水的电离程度比

3、NaOH溶液中的小B乙酸溶液中c(CH3COOH)大于NaOH溶液中c(Na+)C若两溶液混合后pH=7,则有:c(Na+)=c(CH3COOH)+c(CH3COO)D分别稀释10倍,两溶液的pH之和大于146下列实验合理的是( )A用HNO3除去铜粉中混杂的ZnB通入足量Cl2,除去Fe2(SO4)3溶液中的FeSO4C依次通过溴水和碱石灰,除去CH4中的乙烯D通过饱和Na2CO3溶液,除去CO2中混杂的SO27下列实验操作、现象和结论均正确的是( )选项操作现象结论AKIO3溶液中滴加HI,再滴加淀粉溶液溶液出现蓝色KIO3氧化性比I2强B向Na2S溶液中滴加盐酸产生气泡Cl的非金属性比S

4、强C将一小块Na放入乙醇中产生气泡乙醇含有羟基D沿杯壁向水中加浓H2SO4,搅拌烧杯外壁发烫浓硫酸溶于水放热AABBCCDD8四种短周期元素在周期表中的位置如图,其中只有M为金属元素下列说法不正确的是( )A原子半径:MXYZBM的氯化物是弱电解质CX的最简单气态氢化物的热稳定性比Z的小DX的最高价氧化物不溶于任何酸二、解答题(共4小题,满分64分)9(16分)糠醛()与丙二酸合成香料过程中发生了反应:(1)糠醛的分子式为_,1mol糠醛最多能与_mol H2反应(2)关于化合物的说法正确的是_A核磁共振氢谱中有4组信号峰 B能使酸性KMnO4溶液褪色C能发生加聚反应和缩聚反应 D能发生取代反

5、应和加成反应(3)芳香化合物是化合物的同分异构体,能发生银镜反应,遇FeCl3溶液显紫色,任写一个的结构简式_(4)下面是由ClCH2CH2COOH合成丙二酸二乙酯的过程:ClCH2CH2COOHHOCHCH2COONaHOOCCH2COOH丙二酸二乙酯,反应的条件是_,反应的化学方程式为_(5)水杨醛( )与丙二酸可发生类似反应的反应,写出有机产物的结构简式_10(16分)一定条件下合成乙烯:6H2(g)+2CO2(g)CH2=CH2(g)+4H2O(g)H1已知:2H2(g)+O2(g)=2H2O(g)H2=480kJmol1CH2=CH2(g)+3O2(g)=2CO2(g)+2H2O(g

6、)H3=1400kJmol1png_iVBORw0KGgoAAAANSUhEUgAAAaEAAADJCAYAAACKeI1BAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAF4NSURBVHhe7d0HmCxF1QbgCwaSgCQJEn4kS5AcL0FAkSxJggoISBAVL1mQJFEEQfgFJIjk9BMkZwQDcMlRMiggEiRKklD/vnW37u3b9OzOzs7szuzW9zz1zExPT09PT1d9dc75zqkRISMjIyMjY5CQSSgjIyMjY9AwloTeee

7、ed8OSTT47XXnzxxfDvf/87PP/8859474UXXuj+5Bgce+yxYZVVVgkvv/xyOOqoo+LzWvjjH/8YvvrVr4ZHHnmke0sIm266adh99927X2VkZGRkDAeMJaH7778/bLjhhrFttNFGsc0xxxzhc5/7XPjyl788dlva5+CDD+7+5BjsvPPOYcSIEeGYY44Jv/nNb+Lz0aNHd787Ps4+z4/m233da9JYSpp546jBw5svtVfXj77bfDxRdfHP7yl790bxkHv+ell17qfpWRkZGR0Y7o0R234IILhqmmmirceuut3Vuq

8、8dRTT4VFF100bLPNNuHjjz+O2w499NBILLfffnt8XcQFF1wQSei+7r3hLC7LPPHlZbbbXuV9U488wzo8UGr776alhnnXWiRTXLLLOEs846K24H5Lb99ttHiy0jIyMjo33xCRJ68803w1prrRWbwX3uuecOW2yxRbR+Vl555WjFlHHSSSdFUnn88ce7t4Tw7rvvhoknnjiS2B133NG9dQwSCbFinnjiidhmmmmmSCrwxhtvjN3+3nvvxW3cgmussUYkH3jsscfiMZDPAgssEFZaaaW4HfFssskm4dlnn42vMz

9、IyMjLaF58gITEdg/u2224bB3yD/9/vdw5513xu177bVX955jcNVVV0WL59JLL+3eMg5cYtNOO22YbrrpwkUXXRT+9re/xe3/93/F48lbpTce8hq6aWXjqSC+NZff/24/emnn46f+fGPfxyuuOKKsZZWIiHWERJiEcGJJ54Yfv7zn8fnGRkZGRntjU+Q0CuvvBIH9wMOOKB7yxi89dZbn9jOkplkkknCTjvtFPbee+/ws5/9LJLUqFGjwi677BLjRocffniYcsopw+STTx5uueWW+LlkCd17773xNcw/zhf/7

10、nf8Juu+0WjjjiiO6t47DllluG66+/vvvVGHfceuutF1ZcccUw66yzRpK75JJLxp7f5ZdfHo/1hz/8Ib7OyMjIyGg/VJLQpJNOGuadd96wwQYbjG3cc4jjoIMO6t4zhHvuuScSC4JCLNxvM844Yzj/PPD8ccfH/c/8sgjwwMPPBAefPDB7k+NIyHWVcJss80W1l577e5X4wPZ7bPPPmNdcQlcfpdddtlYgcNmm20WXXjUdwQVP/rRj+JvQUgZGRkZGe2HShKacMIJ4wD+zDPPjG133XVXJI6eXF1UdMkt9p/C

11、fuf8ghh8TXRSQSuvvuu7u3hGjN1BImILKq4xTBDccS+ijj+Jzx7/mmmvi4/+7/9275WRkZGR0U6o6Y7bb7/9ureMwWuvvRa3l910RZB0L7nkkvG5WJL9qeTKSCT0pz/9KbrMPHLHFUlIPAmpsLJOPvnksP/+3e/80kQISDNv/71r/F1Ekpw0XlklWVkZGRktB9qklDR7QZUarbXIqF99903zDDDDFGSTdwg3mP/KvK48MIL43tccMQISR235pprdu8RokvPPtR4CIY4ogr/e9/Y5JrMSfpX/6V1TIiRfJbSo

12、n1mZkZGRktAcqSejTn/50WHfddcMZZ5wxtqUE1Cp3HKJJBAT2/8xnPhPdepRwZaRkVcmp4jpADUeYkL5PzpF9TjvttFiBoRao5cqxIvjwww8j+XjMyMjIyGhPfIKEkkR78cUXD3vsscfY9sMf/jBuZ/EUQRVHBFBOSlXG55xzzul+NT5ItVlar7/+eveWED744IO4LX0fV5zXzicjIyMjY2jiEyTEvUVdpm5cGTfffHMUKRRx3XXXjad8y8jIyMjIqBefIKGMjIyMjIyBQiahjIyMjIxBQyahjIyMjIxBQya

13、hjIyMjIxBQyahjIyMjIxBQyahjIyMjIxBQyahjIyMjIxBQ0Mk9P7778eEUks4/OQnP4nLNqQltnfddde49o/SORkZGRkZGT2hIRJSl01JHk0VBcs+WKpbnTaleL71rW+FhRdeONdsy8jIyMjoEQ2RkIXrVE5Q4fqRRx4JW221VTjwwAMjIdkGasl94xvfiM/rgWoM6sT9/ve/zy233LqaGotWEM7IGMrod0zIWj1XX311XE31U5/6VCz7A5boZhXVA2sAWQKCaw/B5ZZbbnvFRR71iU6HtcXUgCzWgeTSL+O

14、NN96I+1gGJhceHj7oNwlZLgF23nnnSELvvPNOfD3XXHOFlVZaKT7vDYqXqqKdkZExDhZlNLnrZFgr7Itf/GJYZZVVYrvqqqvCeeedF+PGRajSb+Jqn+WXXz6OK9Ywyxj66BcJWbbbWj9IhEgBCaWlGZBQIqje4PPf/OY34zISGRkZY2AZFJO7TsWtt94aXfSsOeOC9oMf/CBu+/a3v929VwjHHHNMXPrl1FNPjftYpFJMGRmxijKGNvpFQtb8ueyyy+Lz7bbbLt5c1vcBawMtu+yy8XlvyCSUkfFJdDIJseK

15、mm266qJYtg4ApeT4QkPXLWEdFvPTSS3ESa7Xl5557rntrxlBEwyTEVP7+978f40Hw1FNPxdnLlltuGdcYYoLffffd8b3eMFRIyKztoYceGtsefvjh8M9/jOKOIrbrafkNwPSfv7558f6yHU4q9j2BgIQ6kPxtATHsK3W5+3rfJK/3fMkJOkJjpkHgoFHJ5NQWn+sqk+zdu666674fM455wwzzzxzfF6GZfkdIy3bnzE00TAJWXOImq0YQJQbtNZaa4U11lijbgKCoUJC/N2IeYcddogydjO+ySefPMw333xh

16、4403DjvuuGO0HjfffPPxVoOdZpppoi/cNqpCM8CLLroott/97ndj25133tn9iRB+9atfxQ5adFdQGE422WThpptu6t4yPhz/85/fDyvp59+OkwxxRRR1dgbWLsmFfz7GQOHTiYheYTuz8cff7x7SzUsnuneqsIRRxwRj3HPPffE15b4r7XMf0bnot/ChGZgKLnj+LV/+ctfdr8KMU5mVgiWRkdURVAXIp5f/OIXcT+E5fm0004bJppoomhVpnbttdfGzzzxxBNhqaWWimT29ttvx22AhHTa8nckUB95f5lll

17、okLEXpuaXbYbbfdxh6fBScgbpuYnwFlyimnDJNMMsnY7RpfvxVwq5ROGf3HULWEiqjHEjL5OvPMM+Nz7cgjjxwbe87ofLQNCa233np1uYb6AwM215f4le/TyQVPLSOeQE7K9bTtttvGffiuzcTqVer8+c9/jtZGGtwtfZ5ISAdiqYwePTq+JkfVCeeZZ55oCX32s58NV1xxRbjgggvC1FNPHS6/PK4XxEHHHBA3NexNtxww9ic57rrrhsJzPetvPLKcdu5557b/akxEAyWWOy3UDE6xtFHHx2vu+df+MIXwj

18、/+8Y+xZIaA/J4LL7wwEqWJAuvst7/9bSRPuSxW1s1y2tagk0nIvasf7LPPPt1bxkH/SjGgww8/PE7U/vCHP8TXCaz2VVddNTYCKPcfRd1CCy0U703u/4yhgbYgIYOYnAiJr62Ewd0NfMstt0TXoRmV19xTCeecc07cpgyRfZCWwKkBuV44vmNsv/320eWlI957771hggkmiN+ZYjY63hZbbBEHmumnnz66JQRzfVbjqjj55JPjYIQI+NHFkHbffff4vqAv0njzzTfjjNM2FpN9UswpgRsDyaywwgrxtcCv3+

19、X7qZBYOaw4nxM7Mgu1v3OUjOzYzuM73/lO/NyXvvSlSFYZrUMnkxBwC6d70j2liS9ySV955ZXde4Vw2GGHxQmYSZN93JtLL710zB1MllRyMbO+TRBNFjOGBtqChMBN95WvfCXeYLfffnv31ubhxRdfjLMqFgK3VAJyEa8BHYQVwbowsCcY9FkrKZjaG7izdD7HmWmmmcJyyy0XB20DexmsCfvqiElhmNqMM84YCWyqqaaKJHHjjTeGo446Ksw+wx9mYfpCE+RyLvNXGIjqr5bUiKMIKV5P2vf/3r8XtdAy62

20、9F1ldRKwelg/3t96663jo2to9lrL5ZfRPHQ6CcH1118fJ1Zf+9rXYhMvrurfJmdzzDFH3MekiLu5mNwKXrOGbrvttu4tGUMBbUNCbj7W0KSTThrNeG4wgfB6lGL1gCrNIHr+ed3bxmHZNpzu9nH4FuEgdz2U045pXtLiBZSURTARy3Ooulk9vVIdLDEEkuEE044IX5P2ufJJ5+MVsYss8wSj33wwQfHmnuep7booovGYxMqIGggWV1ggQXiMe3DDWfGKP+CCy8Vk9UMAFwfX/3qV+P7LCtkD86F645w4owzz

21、ojbinDdWYhIkGXn/1h99dUjwSJlAozshmsthgIJAdea+1DrqbAxkrEP1Wa534uD8ioQ9xgXchxy6KCtYkJm5wY5A6Y8I4Os+nOXXHJJv+NFXH2OR2VWC3zP9jn99NO7t4xB2s5doHMk91Qq3AoGdYo4bbPNNouDtEcuOFaI15tuuunYfQT0uRR0SoVg99tvvxh8NVN07GRxACHB/PPPH58ri+QcfN5+4jtiTLPNNlvspH6fOI2m4wL3BiA1lh4CFYvy+RS7KsJAoNqF2ahj+G8kE7KsiCUIGBZZZJFIgOXZa

22、kbzMFRIqL8wwWMBuV9To+7MGBpoGxLi9inKllkKXFRf/vKX403HGmBNFPfpC+TmOA5ZeRkpwfb+P+ygcWUT6LDJkUSEEBGEbQukJE0888VhhQhXM6LjFHJMVk9xeRAQsDkl/XGiJhADhsX7sx+3GWnGtjj322HheyAhplKXayIwrj1XF6hLbqZJoI2zbU/a659R6yqpIQBZHQmTUfqzEjNYgk9AYuA+lJBDDuMePO+64louYMgYObUVCVXJOcRquLS4oAzoLyaDIZO8L3MgC+Qb84vdItv31r38dn1OMGdS5

23、A4tqOJYMy8A2N396j2vr0Ucfjc+rgGCcM4FCLbCGxHu4IgX699xzz0guco24HZJKCBmDgZ+4gKKI65KQAlEceuih0UJjJTlfbrsyuOOUUxJbYsGwwPbdd9/4HhUcF5/4ku9muYlpccl57rrNOuuscTJA4bfBBhvE7eJYZddJRnMwXEjI5E/B1ozhibYnoQQDnQGXO4mSBlFwSaVEtnogtmFwFgQ98cQTY8kQg37RpWQQZnmYedmHHNl3mn0lIEAuO7OynuCc6yEhLjsycYl9BnrXgsVCzUfqynVG2AAI0HXS

24、aX0u+ca50Fg6CIzQospiXHDBBaOLDcSz7HvIIYfE14jJa3Ek14OQo9icA9J9/fXXI1lz8dlu32RJZjQXw4WEWOxJMJMx/NAxJFSEDH7uKtYA5dj3vve9PmXzM+tZAOIwxWTPIhCMfcRMyEaLkExqwOY6K+fiFIGE0n61gITEWbjIqOGSVUZA4bOpFUURkGJCRQJ1/SjxWDBVgVsWEvUcIBKWjNcsH6IDx6slu2aBIrmMgcNwISF9V/PGJ7oSBICs2+lgQygrA3uojXXXDMGzWsRSzMgIGqgl9PDjUYaXQuIg

25、AXD2qoF58rKQKrlGllyiyjsqqThSpo4h7LFw7qjequqPkyVJ6ZVhFmoBFlCBgKHWr52LkAuuIyBQyahjOGAjiWhIgTqxXsEzs3mDZhnnXVWw8frCc6VS0yMSUuL+NVCPfs0QprOw7HLrrBa2/sLVl2VdZXROmQSyhgOaAoJld1VfUV/SShBgJ47K5X2EGinFiuKDDIyOgXDhYRY+9nKHr5omIRk4ZMUSzJNMl9KMcFrjXunXjSLhBIEzOXcyIshVZZDQ+7cW0XfgYBKDEQFuRpwRm8YyiTEqibwIfW/+OKLY

26、z5gWjKkGOfMGPpoiITUMRPrQBwy8ymmxC8Er8U/BP5l79dLREhI4mOxVE4z4LiXXnppTACVO0PIQFJMAee9gYb4DQm4SgmD8f0ZnYWhTEKEMSaG4qs8FyqLpATpcsWSjKGNhkiIZbHYYot1vxqDVEUgQR0oeSn1wIAsME9UQM7MUmh2SZhUX42AQX6MmZe6ba0UMRRBBWdAScslZGT0hqHujiOiMWYUm6K5ksMzhg/6TEKky9RoMvi53VIhS1UBWBpmOCAp0symHiAhSZHUW45HsdWq3BMuOdUFWG2SPYkZr

27、P8jntQqKEdEOEGFlpFRL4Y6CZmYpdy21FLeWsbwQZ9JSF03NwvXmZmMPB3SYouc9YeEuOO49QYKpMiWLhg5cmTM02Eh+Q3NrtBLFMEC4xbMyOgLhoMwQR80bhhTVKpvh7htxsCizySUVkxMlopyMsjG6ptupuRGY2HUm9yIhJopTOgLKPtUJZBQ6vzl2KgYTdiQCLVRmOkRb/RFpNGp6K9CcqAg6ddyIVWVw9sNw4GEuMNTRfiqYroZQx99JiG1y9wwlC0ULhZjM4BzadmuKrScEoHG4mJxPWEwSagI1bKRq

28、fVP1EczM1NORzHVvroHWYrt7IJzzVUAV6yUUo+isAz/pff46F2bKqJR9Vw5oE4JJqtTphwTC96Cge2M4UBC4P+QsN1MKwi58dRktD/6TEIGLzNJFpBlphW0NONnASEjsSLr12i214N2IaEELjQdg4UnbqRGG+EFi6ae6r1UcFxw5SWL2wlI0v+lXJDJA+uvDEoldfqIUFSmMLkoAjlRHVrioWw1iuspPVQuNKtGnQX0NLUAEwg2LENRRYa9wWfTMYvrRVm90zGrqkeoiG4C1dPSHoONoU5C7hmJ3OoQqhYPy

29、KMZoiQrAOu3Js2dBGPhcEOfSSjh6KOPjgH+sqxa4U/b6yUgaDcSSmD96ByjRo2Kqh2DtVUf/T55UlXwu1lAqVO1O9SgkyhIqFFcctkgjVz85rSuUREsKMVW7VMEa0m1iuTnt+REWu5BQVYWpu2a6wT2Z32S0hO79IWIuE0RZTpmqgqOXJCMwpj+syoisjqtRf3aFUOdhKwRVI6Vbr755uGOO+7oftU4WOfuB3UUOwG8SsbU7373u5X36lBGwyTUTLQrCRWBdFTUTktKWF/HWvlEGck6MouT+9BJKjjuRxXBd

30、VgFXRNYPqxBA3x5zSEz1aSSVDKpiFtvvTUWSlVk1j6Om8QeCqaS37OSUrKuayWhWO6ZWXFaRbbeGJOFA812FV5Nx3QsMnxKS9abmENVfJL7J1Vjb0cMdRJirZSXlVf/Ue5hf8GKd+8Z1DsB7l2Wm3NuZ+u8Fcgk1Ec4V245eU0KiLppDHAWyzOz7zQRAkUga8ISF2J45OSy2CUdc3OxaMokxMVmQTzxsnKszIwuWcFIwPWRyMwakjfmtYXxElFbQNC2tC4Tt6dj1+OSYY2ZFPg892865kknnRS3JVKygF8ti

31、8f2emOXA42hTkKq37OOizAOmMj0F51GQvpHsugpBocTMgn1A4Lc3I9k3m4eyrott9wyKq8M5p0AFRwk8lqXyW8Q52FJJKWSbWUSQlK2W9KiJ0gG5g5jKVom3DpOavtZ5tznWWFmwp4jKjBoiDPVQ0KEFa6/Y4pppXM1IfAcSYH3uObK8B2+q10HqkxCjaMTSUiqiHPWb4YTMgk1AfKbrExqQBfbQEazzDJLlLPzb9cjZhgsOGfW25133hlzpbjQCBbU8UoL39UiIau51gJxx8wzzxxdfWUY/A1A3ieZdqxGS

32、KgIrjyL+UkN4DZ1zN5ICFhC6623Xver9kImocaRSahzkEmoyTD4mokLshv43FQsJSuzkjm3G8SwUtULcSDnu88+8TXaVE+8vsiVJewvScJrMFFDUEg0qiK8WyyySZjpf0ptoQAvU77E0tQvJHJ1wNWFnJ0jKTMQ046eBlW2hUTQrztiExCjSOTUOcgk1ALYdE9LigxEDfXDDPMEOMTYhaNSJGbCdYZZRupveXLEQqRhRgLUMeJezlv1cgl3SaJtpgPUQbpdlmCjTyQMGsGoRhojj/+Fiuf4sttoiDqrgRlyV

33、i5tIkHPAetyCV3gEHHNB9tBCXOXcORx11VPeWcbAOjc9x6zmmvB+WFTcdcQNStVw5i6vKdWhyQPXYrsgk1DgyCXUOMgkNAFhHFD9KHhn0uOtYSeuss04caAzkraqVVwvcVwZ9Hd5gLiYE6VxYHnJ6uMmQE6uh6CLzOR2mvLw5JRxim2mmmSIR+a3ypm644Yb4nLtSiSakgjgAIRN3GDjKeR1kq76HjLsM29K1dEykls7R70BuaU2pMsSSkJPf2K7IJNQ4Mgl1DjIJDTDkVXEv6RwqMrjpDNY6pO2dUjsLUbH

34、oKNmKikDkRqruP03NvprniKe8JDkgj6rYGQsMiVS582zr6ZjeKx+T4o/lRGLPSmpnZBJqHJmEOgeZhAYRbjwSZfkzKRnWOk3yJ7iVZJK3O37zm9/EqhJXX31195b2BjejmBEhSbsjk1DjyCTUOcgk1CaQ02KAFDOiUpMIynVFuaWjWnGyXDanXUABWKuCREbjGOokZO2wYpklMA489NBD3a8ah8XyDOjikp0AHpJEQmViHurIJNSGII8mM0ZASuO4MVUVEEMiIDCLb2fZd0Zz0CkkJLZIIMKC70uz8GXZgjY

35、OWHCyav+NO5W/Yawper9dmv6eip1JT5atc9AN/8pQVGrkUmozaGSAJedwUjA303K/WWmR+hAGED4kNE6cJVwmVLbFZOQn3766agSVNDXY1mk0V90CglJbFZ/kJy+L+1rX/vaJ4r8GgeIRqr270tL8VbKz6r3+9qkMYh9iiN6XrVPfxpFqYmmc/afV+0z0G311VeP/0WrkUmog0BFxl9+8MEHx8KgyEhBUPEkxTjdyCoT9KV4bEbvYHUiGQOEWXqyQrlQqOv8FyzXZotKOoWEJDP3Vj2jCsi7yh1Htt9fpLQI

36、ZaCaBRMQwptWgLAmueOaPZlpFGoqUqe2GpmEOhiPPfZYdM+pFKxoqKKdbmJLUFgmWRFR+9SDt154JFpc2hU39r+A5FCDYq6urWaGWLQ+VX5G/s1Gp5CQGoKNLJnQKcIEyk4koUiuArypEkcz0Y7CBInsSmK1GpmEhggIFy6+OI4ezEzTwMmtZ3qDQYzddrsV8Zzdx8Z1lhmrrGfGTHJ58NGB58e/vZu9w4ZsbKDygsSjl2jVVdddewyJqo0NGP2XkYmocbRTBKSCvDyyy/HXDfKSoTRbGQSahAWpZLUqOmEy

37、U0hT0SSY73rYmQSai7M2szWuDq4PNRT47ajuqO4W2SRReINduudd4ePnrk5rLnomJt/PaZsPUxN3Z1wO6DDnOo4uB6SsZNayIhd33ANValodnoFBKSx2WNrb6ikyTaaiD6L1Jl9majHUlIhX3VTlqNhklIRroKyWnQsqIqMuI3teKqwPm8884bg7e9IZHQcFvMaaBgJkfg4OYmi7XI27TTfSGs/+3Vw8MH7hCm6f4Py23aaXfpGmS7DzLMgYROOOGE+FxgWs0518h9i4xa4aIZSBKqSgZOIL9X8aNWM9Ar8d

38、TXyvGdRELisZawlxdXz5jWV7QjCSlubLyo+s/LTQFkbsta6On+apiEzArFHgRkXTRBWZaQbcjpX/6V9ToW+GwvPBZGUiIRNEf/e6777ZtPsxQgeoEt99+R1e7KVz7ww3CFN2kU25fmGar8Ow/XgvPPfds9yeHL5BQcVZIJaUCt+tkMTKVxZuNgSAhxWWVP+pJ8s8K0D97a33N7+mkmBAY44444oi646x9QTuSENKt+p+rGm9AT5XvyfjVi8QLZTREQhQiAt/cEmbVqYglN5CLmIpN6qhe95adjoTo0i31qwY

39、YOWxPPyijeXjg4O1rWkLzL/qrcMmlfwzTTTttjC2R4fL9iy2Z+Rt4uV6HA8SEystSsIiSa67TSEh8wyRxkkkmiYq/wfgfO8kSkkhOlWosa4VCrh1JqJlgQfptFp9U7qtoNTdEQg6A+axIaUVOB6cQYrabFfqzQKDce2l551pIlpAkTcfuaVaW0WT8+4GwwzpTxf9pvPaZL4SDrnksPP70s2H77baNijDVtK0mmzoLS8BNRQZr4mHQZJpzyw4VmTg3guWWLTu+9tprR/VgERSI00wzTUtmx80mIYOnpdVN+NI

40、yI5qBnxdCfKuq6Z+tQCeRkBwh45rag5SRPbmeGkGnk5DrUXXvpIaEUjKupoI993Zcs6z7GP2CJQEcmL5dQctGSMjNl2NCg4N3/nll+N3JJ8ZcDxMLS3ufePlt4V8lNy7hiGrbEtlUrLbfmmuuOTaJVlOMlRDCTUY6zq/sBmQ1WLW10yxcJOS3Ugkh2qqll82OWyGqaTYJqUeocnj6r1KTZ8aNLpZb1c4555zuIzQXnURC7gPjmDWyWlFkuNNJiJuNQVJ1/2hSSBgoxfsOV6jK0BQSAgdLJlcj7jg3X1bHDS5

41、YMXPOOWckjHohhke+qmPy+xqwTUrEBa0uO/XUU8cSKlR5BjtLPChLstlmm4W99947Whlm5z7PpWWV2rTEw3BHs0mIlyFZdWnA05SDovoyCaxqZrKtQCeREPelybV7tRUVSjqdhJB01b2TGk5AOumem2eeeaJCl1u/IRIy8AgymRX6ctWedRZ/lBgRtRBCoaygkOstkS+TUHvAf6rMiQ7RDDDRuVgl+Rn8rNgq10a5FjJxC9gllZmGsCyUJy44atSomK0taM4FQn1DlTScXLWtigml/svF6rp7bBXR9IROIiE

42、TaonhJmqEU8a9ZmKox4SIevw2fLDvvvuOZ002REIGFgfUzKLUMLvrrrvie1gPEXHHKFBYj688k1B7wP8wUMpEE5eHH344LpZnIGJBWeeHheTeYUWle0xNLTEMNzDpP5IyuEjM5VcmaHH/VSXidjJaRUIJyTJC9sVAcRkmEz21RtEpJJR+o7HMWMet3J/fXYV2JKHLL7889kcTx97aD3/4wx5d7VdccUVM9H3wwQe7t4xDQyRksPJHkGRytclBKcIN7UaqkuNVIZNQe4DqjUAkqR0HA25klQhMdFjQYlAGKoU

43、UufnUyCP7Jwbg5uPi01QymHHGGePjwgsvHK1xA4a6ZlRtarwZRJ599tlIgL6jb26/t8Nzd54XVlxmkRgD+/KCXwnHX35X+HdrYvYRrSahBIKFngYQy6azXms1g0sjllQnWUKjR4+O8SATnlZYje1IQrwR/iOeiN6ayWRPxNzT5LZpMaH+IJNQe8DNL15goG53uGfkn5kEEcQceeSR0ZIyK0NA4k7IylIYKkWkunok1dyALCpW/I477hj222+/GLRHwlRQBhwTq5i39h457ofhwRv2CvN/cYxlNrZ9dtqw/rG

44、Xd9FTazBQJNQbxOncE7Wa2F7VEuq9oZNIiKxYTIgCGGkPB0tIxYSUoN1KZBLKGAv/g1leszvYYEDsiHvugQceiIIJeR4Sq9U5Y1FRASLcueaaa+zaM5qBgIiCK5kk/etrrxVeGH1J2G7OcfsU2yTTrRKuH92aOFW7kFBvMDgj8r6ik0hImEFcSICdS2k4xIRyAdOMAQfptYTUZqxs2e5wz8llouxDVlx1d999d6wEIoj605/+NOY/rbvBN8PDZx8UVi0Qz/ht/nDaqfeHlVZaOlpeEj8pRc0iDVhnnnlmFOx

45、wX8uf4mbkDvTdvbl1DNCdQELDoYq2ZF7nJX7G+ms2hhIJEb1IhPb/WgKFmKMnZBLKGAvWAh9/KypCdzLeuOX3YeXxiKfYFgpnnv5YF1n8KOZMcfMtscQS0eUnJ8eaT8kVqIlZqT4hLwdhSfreddddY8yLS/DCCy+MEnkxK/9HJqHG0GxLCDEQwpigtSLXbaiQELfl5z73uRgn9N8iIbHantJ0MglljIXO1Qr5aafj41cfCbut+KWxRFJsUy+wURj9xLgyLiwcrhvKP5XkuXAEs6nQ5NGJW1ESEYBYDkLhX7l

46、TaVVNTWa5qtzEFJmEGkOzScj/yZ3LsiW4Gg4xob6QkDiZlB2EQ8hSxE477RTVrbUsokxCGWMxnNxxfcW/Hz0xbLjqPDGGJLeJOm/uhUaG3S67PzRC2TotF497nhpRDpSB7o477oi5UYQRKhXssssu3Z9oXwwHEuI6laiKiFqxgGGnkxDBhnMXb63CQgstFL0AVcgklDEWZt4UY9kdVxvIQ/KtEi4ffdQ6Accmm2wS3XRW8mx3ICGtr2glCS299NJNJSHnKdla35Ds22yoFjIUSIisuwpc1KykKmQSGqYQHDd

47、w8HNTNsliNuAxpQ20GYOLP/3pTzFGRODQFxggKQOrmve4WrUqUQQloTwseR9gQkJ+nXI8iCrUASsvdEYd5z4qf59+nSAny7aiq7dREnLu5e8qt8UXX7yShJxT1f7Fe768j+tGESfgzjqVB5l+T7kVf7NjFt8r5sq4DsX3lK+pIqFa56tx/XILKqLrvyq39ddfP6YZJKgNWbWf/07MJr22igEQ59RLQix5527iVAWrPVOhwmmnnRbvIwIe1zGT0BCHG1URUS6eItQKm2222cYmffLZqu0kj8ZgVIR9dZKhIN3

48、uJCgAXGtmWQv777/eIUjU1PLT0kmtQHNSFla5f+Tis9AIrgM8q+4H5dddtm4jWhF/MqEpYhjjz02ii3K31kkE4O3bcUKKo2SEGIuf1e5KaRbRUKOXbW/gTzBdSi+p1Av6APiG8hYBYDiPqkVz13eWfE9axElsByK76kSkgQsRRKy3lNxv2L71re+FYlNjEpuW7lx7RYTsrkRq/bzu8Qx0+u0SrD4Zb0kRGGq7Jal7sv3FcKcffbZ4zmLj8rb0/xW1U8yCQ0hiDGwcIpwc/HHWg+nCCIEN58ZnhiQG5S/m8Kr

49、SEJmc1RcCg4WZ3kZrUcjeUImHQpsFpuZu0aJp+PXqufIzeh9wglJu+D+8f9bssPA/te/jVuL4IlxIouf2/RujBY2lZUljVKQga18neVWy1LyDlV7V8crMv7uKZ/+MMfoucgDdD2L+6TWtVvTq24ZpPrUHxPP6yyhGp9j+Y/beXEsC/uOOfBRW1iW4wLOU/3jpw7FuzVV18dJy2sSxMX6rlMQkMAgpoWGVQlYLvtthvPZ+1mN+tyw9YDHafoMtGpzPoMiMXtGa1HM5NVuVYMcGIltfJcuADtkxpysWy354iJq

50、4UVVVY5DZeYkImcgdbA2mwQp3RyTCjBvSHZm0Xk81IWTAiqSoGpMWqsyiTUofDn+cMtUMa05UZbYIEFogy46HvuC9R/Ukmgt6U3wD7cMhIwM1qDZpEQt4rBzSSFa7UW/Kf2q9XEizxSOblPTG4AAQ11dZzJnCK58l8kHjcbRXVc2XU+WGiEhMB1Mg75LO9KedVhuXBciVy0rmsmoQ6FTH8uMvEcq9qSV/fXUiFBNdBwy/QGNxLiEyNQX6roZsloDvpLQlwkiYAEhnsqKCxmhFzsK1Atx8lgmywoVlFaTsN74

51、ibcYtCOJCSO5bxVvWgGbr/99hgXU1FD3yu63ZoBY5/z1VxPdREHG42SUE9wzyTrWnzSJLppJFT2TfZWkqSITEI9A7lUWTdIIy2h0Qyk76mHUPzfyMqS124oyZfkq630UQ839JeEDCL+G2s3FVVSVfD/qZdnfxMMMLGZeOKJ4zYuFgOwmIg4URFFd5zAc1pJ2b0gWVflh9QUQ01oFQnJt0rLl9dyBZWhHxEcJIiTpnOm5kLmZvcSMl2XRBKsx+Lv06gLixNCcR0u7fQ+EktgAdlGBCJGotoAAQmVGmGD92pNH

52、sSqelsqJ8Wz0nenlmJbCYQFtvv/UuyqFSTkeokRmSSodk+J1xQSUuI8raYK/MfUHi5kPWSUSahnMFu5UsxAWwmkIlm1HndcAreg/6zn/1sXMJ3MJeBGGpolIT0OfEbg7D8jLI7pBbM9n2GC4t1q4qD/5QVZTt1k0dqyyIQkJgkIBYliAAJOQ/HS40lldBsEiJBdi4UbI49+eSTxxpmEn5t76kitPfUDkxAAOmceRq8JspQdZ1oI1mBLMTi79MoGosTOfuK1ab3JSIjJp91LW0j7GBp+h4wGdxhhx3GHi9d3y

53、IIiyxjkiYBqSGdBARGCp2+O7Vy3Mk1t33LLbccK25qBQlVod8kRDvvxnRB3XQISCFHA9kKK6wQteplxVYZmYR6BteH6+MmbSX64o4rQ6VqqhedK6M5aJSE9Dd90myzL8U2EwkVGwvAJMNzazt5LMvGDXyD6Y6zjIcYg3NwLilOSd4MyMN2+XDcP+XvrAcmV8Y6VlBv41lvMN6RmZPTk0T3Bn2LW1TOVtHTwGKxGGQin9SKJNQfdAQJuSDknm5M1lAMMnU9TzMhMwave5tZ+1PoxYum+nCFwpVVA8dAKNP64o

54、7LaD0aJSHWrJwvC/rVgnsMSaU6XyaAhC389aTc3EL67o9/OM4wfRcLo1HE80iDHyDQULuV+sYqWTA3VUPDNCsDy62voC7DAmQtvveRvsjK5WEuREi5ApkWRbVr61E25MQFnbjKcyo4CLiSSTkpgXJdl4nH3EtIKENN9wwBkLNxt2ERcYfDvB7+ZL5sOt1YzYbyR1HqttfCNzq6AaugSDQoYhGSYjKSpJpUq9VQYxI3zToi1GwYL3mjtEfDbZesxwM9J6nVnS9w2CQkP7C/XbAAQfE8+0LuMcQkWKk9eLVV1+

55、NalTXgsKwkXvaNUciyeXWCFTRQIYD4TVqaxLyhxx22GHRTAQ3Zirl4XkjJGQGJpGJmoWpOpxm44KiOqRrZfDoj8y6P/B/IkBS7f5CRxeP4E9vtpJouKBREhJLcC+Z0BhEqlpSvUku5OYlpZ1gggniIxjk9UmWkoHevpJWDfxlDDQJIUzjTVWcpF4YXxCCYHxvcC2MeSZnfmsxrtUXILByPC0BIZJmn3322b0q40wUypWqW4G2JiF/goCYhCQ3phuUKc/36nnKzrcuite1SngnJHccV9Rwg2tFecR9wv8+mNJ

56、MHbOZ7jiB03aQmnYqGiUhECcRAzGQVDUkZCKZYhIGdDGPKiRSqzX7HmgS4oWh+OsvjGPyieoBchbDQUaAmPoCij2CiVqhCbJ411hLE4FaECNGZo2SYb1gcVnEr9Vo2BJyE8grQEYuHB+yoJ2FvFIBPLWSlPooywHLQEJuvuEoTODGROZFZc5gQeBZEiKZZsbgoz8k1Exwk5tQ1nIR83yY5UvkZEkna8lATRVmW2rFckGNkpBabuTiPbnEEJXKBizyWpY4+bJB9sQTT4wEXDzP1NJYpn8KPZx+ulRzpwgPsPa

57、r/psaqTf4uNk8LWgoklKVqWGda17mgxSKhbd5kRB5e9NY4qJRvm91FLiLVd8+T15PANRvaFfwgQgAXThBAcB4cg3oFZR0I6LrTcMJxJq5/iIm5aasVnqmjLUpONGGQxXYyeiXUioN7CENFaviUxxhs4CsC21IpE1SkLSFcicq4B4Hn/88WgpGKjJy7kcCQuqYkcXXXRRnHiZWBfPM7Xi2lqeI8DipFp/dl9XfTY1ZIdYevovixUTCEq43JS1KedkJWy/faxnyai8vny9ybPEoIrv5eac4Oq3+8chAZajX6TE

58、P8sf2b5z3Ly9eabDAcSMisU65KzUNUZ2gE6VCvVcUnqqwMNlMKnk9FJJNRMd1xPZXEQAPVeLdHFMcccE6tRczUaYLm23HPc3VWfESpwP/bk2tJ3WVSKjDp+X13MvldFip5ceEUSEstDxHLvVlxxxcrSWMhcVfP+ysV7gtyltnXHNRvDxRIizaQ2GgzlWz1gCVEptsodR4KfkiglEaZZWEY1hiMJWfKcF8VkrdjSYKj/pIoOVeAKdH9pQLrtOWKqRVzOP3lyaoFbimsuEUJfPBo+43f1hCIJEXQBT5LX3Jxlc

59、DGqrNBKEhI7bFthQrMxXEiIhdEqK6MZQEIk2q2MCem8KQjrP88VFmpjOJIQ7wnrRd5hsYkBgdL/XFu1wErhYqMyQ1ipkKnqD7VIyLn7DT2BW5EijdfHPdsXYQIS4hrsCUUSSr8vkVDKuyxCP1pppZV6LcfUH2QS6mCYnVAUCRZ2ElrtjiuC31sHExTOqEYnkRAZd19RRUK9gWzcdakF9y7LQSKuGmXJMuqJhNyLKa2kJ1gkjtiK6rMvkBhsfOtpCYgqErLgpNdVlhCxg/htK9MfWIfZHddhMIBT2ShE6KYnu

60、e7LjGmw0Wp3XBnKqvRU2Xm4o5NIiMRbHIOrrNxqxYYbISEqPANjLVcuq8HAPckkk8TAvLhGIqEqEpCoS8rOTWzySFVX9RvSPgjIeKVfC95X7VtuzuPyyy/vsaI3opKn5Vx9BvwGBWSrkls322yz6GrUV8vfpyXhhlhW1fvOPYGbvGofY3JP9faahUxCTYIAJ1eWm8iCWuTqnYaBJqGMntEpJMSKYHFwmxloy63KnQSNkBAIyKvYXoUbb7wxponoh/JcWESea4ikPCnk5iN0cK253JBS1W9gFSASLS0QacJZt

61、W+5cZmZcOlbtZCKkYob+y7nSpjgO6qgej11nNyjqu8kqQffLf5afr94XFZY+X1NDVCy9FYjk1CTQOZp5sJcb2WwsJUYSHdcGQYH6qPeStMPJwwHd1wKwvcFgvw9KejkxXDzms3ri2I5mvWAyiSkYsLGG2/c/apnkH4na6ivUOrHZ2ulP5BiK1kGlr+g7kN4VeCuk2zc6nEGEZZLNLUCmYSaBNLRtLaPwVRQr94ltdsFAqiUSYOxvLA8BTMvszb3Q8bQFyZwKbGeuKJ6a0W3rWrfYkP9hWO634sJtLWgriPBB

62、G+B9IJG3OxixJaC6A9MFC250Je6d40iCxPaGDpFT7kCbhQzPNJSPtlOARJSvUFW+ECD9eV702wwY+iTEBeePBjutd5acfCWm6j6QDGu0Qj0UQmZ9UCyq9xHhNVon5aa4TrJNWoEiI9IQamvgcizyyTUphC4NIOj0e+t1p0K0sQJnVLA003OHZctkfbAUHfHJbjv6mlFmARarI1V1AjETChY9ed6IdhPgNFbGbLesO+0YLsK/goqtSyrUK2R3XpjBj55O1TEE9gzW/tBlFJxRnNcsbLHdcFcw4a5UtGQ7oFBJ

63、KwgQlmQT5a7XeyvH0FYQEXFN9PS4LSOJpcZltAfjiysX6bfHcWWL6BSFF+pyq18V9UhOv6S2uikwE/+sRMBFP+J1lQqD2s7ZT1TloYlhUhOr3FbenAtPAouKxKb6f2le+8pUsTBgq6BTXHHccK28w3HFVUOaI0lCMbTiikywhFoKCmiZotVorqj6zTsSHFNyURFo1aeGJsB1prbHGGnGhvnJqACIrFiZFSMVzNznT0udYZvKGivukRl3KJd8buPjUonNOSMaxnadGseb7vCe5275lcO8hqKpz0AgXeDZ8tri

64、d8CHBtTE+Fd9PjQIvS7TbAFxqZjb80P2B47CI2tk1l9Rx7eKO03lUZ1eAMok+hhOGizuuv0A+qkBbVkZlAq4uy8qkZgkG2zfZZJPoSmt0BWfrbLH6GlHH1QLxkgKojr3aaqvF89QQgHXYvDdY5a1ysmobgMxTfgHVlplJf8HEN7tvV9UcdxypuWWE2wXyKyabbLKY+1FvQdyhgqEuTGg2uJZYB4LphAvGFI21YLsJVqPggmNBkHqTW5djVEMRWZgwiGD1CB4iIOXUzXyaddMl11w7Fu9M7rhaCXKDBSu+fvG

65、LX4yL/w0niyiTUPtAjpFYSnL39Wc8YKnJGZJMa8kJOU/GHCImrjfbWSG1RBOsPp/TuM6tjFueoJm8pX0ajfFmEhokOAf+WQREfZNWUmwm+Iz5gtuNiHSsdlXH6WQIslam/FDEUCIhky/WSWppnRqDbXE7F1QVWOlpH/2TlL9ciUEOT9pHnKinWm19he/nUvef9De2pf+rdDD77LPHmAsviz6H6FZYYYWw+uqrR29EleUmX4mqz+c010CZsKLYwDkSUqR9eF8aWRcoL+UwSFAYkPwaSbSycoAbpd2Kdwpk8pv

66、XKrMy2GhHcmwlOomENG4qMYxiS14EQX8TiXnnnTe6pQ3qYB95M1ZqVvqqSlgg5qOqgfc1x1lsscVijlGCbdYFSvuoNkAVVhYglGEimM61aHkYB9J2jZfAb6FqI3CA559/frx9Uit7TqjUbC8KH8SmCA/KcB17IgzLtlPEJRij5PYRhoBFRH/wgx+MV03B72JlUbrVckki7PLvUNGiEfLqKxomIX+SwYqPtAi1ivxRGLhetBMJwUDJqetR0Awk+L0l73VK9W8dqlNysBpBp5BQWt7bAErNVWzup+LkgXigTDT

67、cSeou1gICsNBbEaTNqmQDFy0CKi8Lwm1lQEYCtWCwTeeayAVYImn7mmuuGVeLZokn8kQyBui0T7GVfzM1nu1F1xYhQhUJJbl7LSha6rdSryVYtoJ0XKxZYm9VImsaY4tLghfB5V3+HSysgUjXaIiEMDprIRUGpD4B7Gs5XcoOpmY9enkYTBJyfgORfdwJSO64ThjYDWTcLnzorbRYBxOdZAnVExNyf1lhtDzJI4fW/2uBSzzFSlJM0CQ45bAgtlq5QiyHUaNGdb9qHEhDXcgbbrghnk/R0mkEiHeeeeaJv6n

68、YRo4cOdb6oOJL24uWjXiPdZXEe4pGALdeT+sWWfoB2ST4LT0RdFu749x0yXSee+65w1xzzRW3C+J/+ctfjoOC3A4EVY85h4TWXXfdQcmj8VvkGHRCMmmr4Ubn9tBx2x1cDJtvvnkcGPo7ILQrhhoJwTLLLBP7OhdSagqSmlAk+M22m+EnGCPEPcQ6uIyL/dXxas3w3ctcUQnIpNE8OJaSYH0z4pJyjBZYYIH4m4oNiahRZzLIgkrbxZCUCytCDIlrLhEREmIc1IJrnMpiISDrFXHf1UJbCxOSG8msZMYZZxz

69、revuf/mfuNofsGqQkAWjeoMbzE3nRpJv4IcPlKvKd8lcLs40yvBb+K2LPl3VcHuTMgvGphveao+93fyqMBQ7HihL4rt7Gmhdt2bMWDrNHTfUMRQtIeOD4psGv9QQRSIhXhWxUtsNwpSaPpeWxCcK4HriZkueE/k1KmdXQb9IlpDEVm41gf2+gvVhnBPL4Tnp78SnljvOtUQ6JvLF2ngsJK5A7rgiMTgXyz+4pibx3GhVggzXjyWEQFlhXHpcoGnJhyq0vTqOCY10EI0/2kUTdKTuAP5Z79VT6wgJmYG7kZT+

70、cEEHMl7SmzvHzeu3zDfffPGPAZ1p8sknj8/5w/2pZfBZ+xwC8txyvUCO6TeXkdbDL0qk06JchBIJKamUWwB5+pxcGp3L62LTUevtMPbr5DiLc+fjHyoYqu648iBpMpvcccVSOpRzJrEG0PKALSaUKmmTO59yyinxeRHuY8owYwr4DvXQuLH6CgvLHXfccXGpkWZ4TZBBvcIEMTHjo/5sIusaFr1Grr3QB4iDcdUVrSaxIpaUCa7PIXmxHmMLi6gW2p6E/BH8iS6OQZJ/dtlll22YhJjUA+ESa6TygWS3GWaY

71、If4eC0+ZxQiUylsxk5DD8qlPfap77zGgyuF6YF57brYm0AesDWqgtCaKTuk4rB7fIaYmMQ7RqxdlWwqIAstnqqmmip3KDNJNxyK1n+Cpulia59bZr9fN6SbXMbi4OhGuGaI3g/ZbOh2dREL1VkwgPy6nJrAuJEkXweugfpn/1P0766yzRmskgWssjTWAbMqeBrl+aUDnuUBG+rJ9GwECIhzobwFTogJ9dpZZZokTWMVYESaLUJkqLrU0+PtOqSJpnS3eF9YccvZZjUvORDQBQZsUp/f1h+S1MY4Yr4jKKAyN

72、E7XykTqmgKkbxODnohhYk2wSodjuh/QGJDQQwgSzLP7kvrL7pJNOGv9oN7JlglVQILyYYoopYuKpWUhZbs2F5vdTCwLLaeGFF47E7Sb69Kc/HQcZMNPhXnBT+ozGPcksF6/yWmCWxWkby4xVlmaCzPaZZpopngPioq4h2TTL6YtF6fqQZTZS4bcdYODimnC9Fl100R5dDZ2ATiGhpOhy37h/io2VAvJbvDZJKFbl8DnCgumnnz6+b2LGojWIpjgPKbTYMwsmHZcLvbjom88gnfS+XCIxkwSTRoO5AV7fSe47

73、fSl9phik5/JL2zWEKPZCXp7GKaRX3Cc1v7noXeFitD0JKfx2xG2yZ3z0vSbHxlDXQ7Vszbm5DixFlp7rwIJCgtyVPqtVLX/i2qX30zgDrEpjk3Oaf/7543UyKZCfVf4dbb2yKvYUIDTbdIHMSFxIgzTrgKmH6Q26LmRvGAgSMkAl91i97M7fyiVg7fdkwnPBuSEN8DqUmZXZFhJJFsdDDz0U5pxzzmgduXGAzHPaaaeN1pDjVS2hTV650EILxRuPRWJG43x1cufhuUEWmNtmMm4W13yiiSaKz5OLlEBE8l5f

74、0OnuuAQDBaK3PLLrVXTxdBI6yRIy6VGnzeBdbGmGbibvNTLy/4hLALWW1U1ZOd7nTjW58jmDPte8gdNEjRAqHbdYhDPBvZveL/cvA7fvNXYZB5K7yr2RPlMcfwz2abtmUsjrQ5UH+oqxr7hPas69OPm77rrr4vb0m+uFcZXVYllwIoKiN6QZMIZz3wFRQ/l38E71JdWmUTREQgJaWBJxcPkUXR8G5eWWWy5aROkP6w2tJiHuMOdj8K/yHdeC2QbrbuKJJ443IdeXAd5MCikhGW4CrjZmtFkD1QuiQTgGQQl8

75、kNyWzoFgoQznxcrS2RAX+aZr7DNukGRxFn24vgv5LbHEEnEW5X3Wkk7dSNl8ndj/SRLa6eDi0HkpNtNEoNMwFN1xvcFx3Ps8AJYSKObDNAOsYy6qRoBk/dZmFjCtBZaUseCZZ56JrkdjQLPj5MIAPaWnmPg2Q/DUG/rljnNR6g1694RWkpAZ2FJLLRUJoa+JV+m3cXURXcjAnnLKKWOsRzDQMZEU05lpbn+mrtcUZkiBqcsaJMfkcqhaY96szDnaH9JnWTJUMXy6ZKZcTCmhjjvB7IhVZ/bIXUEFxCoz+2cd

76、1SqBUgtcAmaKCG0owP1ZFRtqpcXdTHQSCdUr0e4NxoJkkfcmGBpIUOX5PyhYTSybTQjtiLYXJjQTrSQhvlGWS2/y6FrQIbjgWBxAoMANxkWGhBCD52ULS5ARkXCpmdl5jryqwFKjiDNrdx1YNikBmDnss1oSeSAtPm6zFOfHCmOVUc3Yj3DC55xbssTqhc7fiHijU8BVKqG6LxbxYGE4klC7waTO+CSOww2frOo0QR3KyCTUJJix9Oe4ZmMECFtvvXV8TYXG6vCauEDsh2uunFuTVG2IhWVBFeRz4Jy40pja

77、RfB9+4xBMsG1QTIpCVjjbnNzcM3xc3tuzR3xIK5BhMTisp08vN4YDwIi3CDdHKpgSda7ouVgoxNJiOVfdPFQXnEll5t7LUF/qNqnqhXvZX2jap/U9Kciap1LakXLyzlxSxNb2C4excWtT4kv1/pu28Fnqt4vtp5cYUjOtaz6XLkVr2UZvV3bpFQs/h6fgUxCbQI3U5GELLLGLQfEAIJ7/MzlAB7lC0JJAVDBUIQFfq/3zKyKEE8TY2IxJeWbmTtZuBgT5RvIGTI4+W7Ncxaa/bjkWG1puxuplgSzDBaQ32ZQ

78、GW5ASmIF/P7tgk4ioVRAk9KNkhMMZqpapIXaiq2YBmAyVrVPVXNNEhQtrdontWLunj4n3lm1X2ppBV/9Rb+RF5QgfsKr4rfKuzHJqzpGisWaZFa9X2zJ21EF6mJjYtXnyq2n5HKESfBU9TlNOoj/yW/zmjclxfIzCTUIf76bp6fZQV9QJiHxoVTMECEJnto24YQTjhdz0imLJMRCQRQk21xk3jMjBwodpTq49wyGlIZmlqSsYklk4CwwbkF5P1VAXOUij43Adet0dVwjSNJuZM96NUj6n4qz44FGJ1pC6p2l

79、2TUYTA3g5VacGLnGVftUtWK/dp9W7ZNaOe8QeVTtlxrrg3Uij6hIQMCdLz3CoA7Oo+oYqe8Y06reL7bidSrDubiWVZ8rt7LFVwSC6ek4aZXZdC29zpZQP0FdQ53WrMx5HcTglLKbPWfVkHAiGLJJKhbqlaIKi7RUbCeVkvfeWmutFX8n6SOXW5rBkFZTFJJFAomnhFb7pSQ1UkpqObEj16sMVhZ3XH+gYw11d1wtcEOwNA36Sd5NHkuGO1jIMaGBBwFQeWUAIPJRcYDEvFyte6gik1CDYFWoPNAsmBVwf517

80、7rnxtZtUCY9GYYZTDmpWvS5v6w0yoPtb6SC54wgthjOQsUkEiWpZ2CGvBTnU6+LsDzqFhMQ8kzuuk2ECS/1WCyaUrKH+LmrXKZCE3/YS7WahmSSU0T8YgIeyOq4/MDFQIJIVy3WRYDtXT9FV1Ax0CgmJbahbyCvQac0kg5dCfFalA6/L+6SKBdx08v2U/5FcW95vqDXxvIFY4LLjSYhLTPA+ozkgiCgLJjLGQRBdALtoqbp/JUPPPPPMsQyK8kncp0rQ9KSA6g2dQkIUmMrhECV0UuMeV5VA/p48PQpWk4zy

81、foL1/t+UhM8dL4hf3m+oNb+zWK+vVehoEhLkJ18mDjATzeg/1MjjC86oH+KG3DQqiZDSq3whdqjIbFmGr5KDPC73fG8QI+wEEupUmEhwtVfFgDIGDh1LQnT76rHp7BLK+jPjzBiH7I7rHwhULPiIQOSYEDwUIYDPYrIMRxEC3+5jM08KT8SmvFMmodZBzCMVUs0YPHQkCfHHpzpuAxE4G07gjkt5UBnNB4JCTmVZLUXi5z/+ZgOQJmHiBTpzCTUfJhksYCKVbYzBg8dR0LcbtweCGgggmbDDfJlisshZwwMx

82、JksTaAILnWifBSvMwk1F3Jz5N2lhe4yBh8dR0JuIhnZarNlNB/ccc1WeWU0hhwTai7c1xRwEsMz2gcdLUzIaD5UglBJO2Pw0SnquE4AEQILfyAWacvoGzIJZYwHdefSapgZg4tMQs2B+BsC6oTK6cMRmYQyxgNVlpYx+Mgk1ByoaF9efj+jfTBsSEgxw+Ia8p0Kqzr2VLCwE6BKbyrs2qlQ8FEyajFptdnIJNQc5PSN9sawISGlytPyCK2C0vL33HNP96vWQFFTK7W2CvKvrFfUSiiKuO+3a/ag0UgU0Vj1s

83、BidKy61PF4VYgk1DGcEDLSEgnRS71YCBISH6GytStBL9zq2XjG2644djK2q2ARd8sO9FKyJNpddXl9ddfPxYbbRUsG25CkEkoI6N/aDoJiSdY80Y5HXWWioUeayGRkFl4q2CxMksmtBKq8LY6/8AaQ610KyI439FKqAyg8nIrscUWW7R0gTrV2t2z2R03sFD2iEs6Nf9DqyAnUX9I31UsDWZcK1dYL4IcnNu5Hte5yXda8kUKis8NpzW9mkpCLiACso6O9XaU1Vl11VXHW2enCkjICn89LfLUX8hAbzUJGVh

84、bHQBlCfV08/cXap35jlbCKrStXi4CCfnPWwUxRpZQK8Et+uMf/7j71fCBAZz7XAkjy9drVjK1tIY1tRQaTc36Wgms07R/uak+wTLmESkCiXHdprFHgrD9r7766rDSSivFIp7pu2666aa4D/iMdctMqKpw3XXXhckmmyycddZZ3VvGQHVqxW0vvfTS+GgROWECqyKDpSR8zhplwwVNJSFko5IBNQrccMMN8bUbqieYTapoy4WiVHormkq48803X+V7zWqLLbZYXOG06r1mtbnnnjteq6r3mtEc23dUvdesxkp

85、2rarea1bzX/vPq95rRlM2ykKCVe81q/EkDIV1evoKkyzjhmKwLEFt0003jdvKy+gXQSjC5V5sJp6K8k499dSVVVZYOO5Fi1YiIstSqKiw0EILxf3Ltf+K2GabbeI+v/jFL7q3jAMS815xtWWQg2e7Jbc9uketnjzBBBNEF7Xq1barZD9cFH1NJSFmpAuYZrkKMHqtOGNv4Iormr7NbmYgFFlV7zWr6TwWvKp6r1lNsJ07ruq9ZjTH9h1V7zWruUauVdV7zWpp1duq95rR3Kutvk5cT52uhGwEisB+6lOfikS

86、w0047hZ/85CdxiQxjycILLxyfa/Wu+skKmmaaaWrGa+UPOTarx/epIs+bYxuvAOJAZr6z6IWwzT5V1VuswOq9oqUG6jLaPnr06DDhhBNGa9qy/EjosMMOG1uUedSoUcOmuGrbkFBGRkYGICEDtAGZS45Hhat7kkkmiQvLcYvZZiDvCeLTXGvTTTddj4IhFtADDzwQ1a3II1k4iMF5WDafa9T3Fi0jkxxxRyIs56qmpUfCHtaVY3Afeo3cgFVmO+LxOP/888eq6jPNNFMkKJaR38kiGi5oKglZe92FTTMDN5D

87、XZT9sRkZGRi0gIeMGi8Sgf+994ZJJ500DuhIQopCb3FmuO+8LEE09csyCvato33nhjuP3222MMxgqq559/fozP+P5Pf/rT0dXm+dZbbx1Jr2pZd2SHjFg9iIkFqzyQz1lnyraULmAFWttPP/30WC3dc82YqaYd62fZZZeN24ZL8n5TSYhLbY455oiBNn8w/6o/NK98mpGRUS8SCe23337RgvCcYlOshpViuYtZZpmle+/aMPj7bFGxSuEm+G+sQnAELIssskjcj8VCIOW5Jdx9BxJTWZ4FY1/CHQSINMRszj

88、nnnJgMe/fdd0f3YSI8Cxc6ztlnnx1fJyR3nHxCx/Zc22qrrWK5LG2eeeaJ77VSLdxOaCoJgRkFE5NZioCyFZSRkdEXFEloxx13jPEh2w466KAoPhDUn3baabv3HgP7it0UG6GT4yCUtM1y3rYREAkfQLJaxCop8zxnlRCHeG6tJ9/NwgFxIdsIU7yfrDLqPa8tlpdiQgivCL/HdonOfpfnGnLicvQ75pprrugKHC6rRTedhMANc95550U/a8vw3lPh7MM2CuuttWbY+DsnhCcLIpYP3noiHDhqy7DBRpuH6x

89、8Zt4LlB28+Hg74yeZd27cMNzzae/7SGPwn3Pz7HcIG664dVv/GPuHPTxaWOXj/iXD8rktHtdfSyywXfnDIieHNrs0ff/xa+P0vdw0bbPDNcMYfHxmzbx34+LX7w9HfWCUst+JXwzEX3ty1ofuN8FG45bxfhfU3XD/84vTrwrgU4A/DH885Im4/MzrC9t7wn/DA8fsHb7Wdb7r77h7ePqtcfkI/3nwhPDtNbt/zwqrhDNuGXPu7z17W9jhu+uHjbfdLdz3cv35C+89f1HY5TvLhOVX3SAcdOu4Za4/fOeZcNj

90、uW4cN1t8sXPXgS91bu7a/XQ4eNetuq7bd8I1D/Xgivjw9XDtKRuGZZZfMax68O/C8x+My9W57fdj1HfaNzbbLjzc/Tffc+WJYb0NNgj7Hndh+KRDpRpkuCZTBieWvUGBW8X9rZHX9lYSRryA8koMozdIfOUeMiM3iAHZcfo+zezYeQzl5Tb8TgOzAZkVQrJ85ZVXxm3ECIL5008/fffeY0BaTQ5dbGLTPrPJJpuM3WZ5DNdWDpb/D8is7XfrrbfGWAxRgnPgwWHRWADP+UK3IlQEplZYoaL7bLLLovxJe+VS

91、UiBYNsRlUfCB2MlkvNaLImrTjzdvdPKtJV2QUtIaEDw0XvhlecfC6essniYfsRm4bbENQayLbYJ3/vF9eGuq44O2399k3Dd3z/sGnv/Hn7+3e+HrY+4Idx15VFh+9U2Ddc/Vc+A+mF486WnwvV7bBJmHLFoOPWu7pvi44/CO3+7Kvzs6yuHlUcuExZdcpXw08seDB9+9E44/2c/CWv84Kxw311/CHt0zdp+d1MdCXXvvRquO2PH8LVFFg4zf7ZrhjTR1OHwv/wjvnX/6YeGFdc9PNz64B3h6A1XCgf8dnTkp

92、3t/f0hYcb1fhtsfGh2O2mClcOBJd3SdbQ/4+IPw78cuDjttPDIsPOdM4dNdN/2KPzwkPC/p/8N3wkMn7RvWX3XlsPxSi4WFNtwp3PDPd8OHr4wO26+9Tdj/vNvDn078Sdh6w13D/a/3nqD5zn8eDccfuHJYdol5w7Rd3/OFkRuF0cbr958Lv9z6+E7B10d7rn+LDj1zcKVz7eRZ8fPh8O3+r7YYtDrwn3XPu/4Qe2P1qxzPjH74T7bzowbLTOYmHeqafo6rgThp0vu2/MWyYmW68XVl5p+bDUol8Jqx94dni

93、z69D/uPTY8NXV9wvX33dPOGmLVcMev7gm1LOAuUHKbJebha/e7JtCyqyVW8hAaIAqApGIMZDoGujEReWbGGDkuqTtWnmSJlVhlVVWiftKhBVPMCs2o0+Nd8F5HH744d2fGnpIJMSdLxbjOY+KR3EXltBEE03UvXdtUDD6TG8qukRCxAseqfESnAuXm+1ltVo6t0RCKYGVG9C+3iuv3rr99tvH7QjvM5/5TEwlIGhIVhcvkuVU/NdyLKvk30MNnUtC3bh587XCfJNuFUZ3z3jfH31mWHnGZcJhcRI/Omyz8Fz

94、hx8c9Fz587IKw8kzLhSNisYHbwlZd23/0qye8qAvPHb9bWGjEyHDGvd3z6I/fCNecsEnYeo/DwpFXjRkEI7oG7W1nXyh89yJSzjfCkRvNE1bf4pqeyQH+849w51NjsqZfuHDXMPMUXSb7WQ92vXo7nLD84mGpvS6N791wyAphkSWPDq93bf/t8kuEZfa9Mm6/7sCRYdGlfhXGHKEGPn4vPPuPv4XHqH7/+2TYc5ERYZJVtg73M6FeujYcvPu3wx4H/zpc8tS4WfYLp+0T5p9z/XCFUfvl34evzbJYOOry3t0

95、Er7/yTLjryTHy4uu+N0uYZPZFwrmMm0cuDqvNuETYP37pA2HHJecK2x/5VPjo75eF1WdcMhz0EEa8O+yw+Jzh+wf9zcfHx0evhbsf+XuIR77v5LD8dF2zx6PGWBnP3bBX2KbLujvspEvCuFS/d8K5ay8fFtzmd132ZNdHTlo7LDjvnuGROg0JM+eTTz45xhUMEma/XDF8/17L5yiCZWSAFEQXWLcPq2zvvfeOz+WE2M73b8acwAISgDeIqatHBTbVVFNFa6wIy9k7jveHKsRq/EZWkLiLfJ9k1Xju+hSJohY

96、IDXyG9LknsDzsJ0eONDpVwTChQAjeM+FgFRWRLKFydYMkJ/eZYoIrJBKSzOqRRQTpHIgSknuPPJ8FPtTR8SR0/bfXCPNO1kVCYyzr8NTlh4XJZ10uHPlg143x0V1hh6UnCt8+8MLwWNese/LZVwi/lsXHXx4R9huyYnCRvuc3zs5dOOpY3cOCxZJ6I2Hwz5LTR9vnBETfj4sv/EO4eGuc/joiUvCLLPPH75zoWHw9fDrTT8Xltpgj/BK78bDWHz46H5h5MILhbPu6hopP3gsrL3kfGG+n40ZsG44dPEw3+Jr

97、hEeffyJssOz8YYH9ukno4EXDfIuuGu6t2438Yjhmu2nDqjteEK/BK9f/b1iui/ji75l23rDn0V3bu0btm4/eJkw8/8bhWn7G588Kq88xadj193fFI/SOj8Nrj98cVlln7rDikecGXfWF644KU8yyVDj4LtfxofCT5bv+h73PDk/e8rsw5WxLh1/cy1y6P/xouYnCOrueFj9ThQ/ffS2cecR3w7SrrRtufoEv9r1w+ajVw+ecf5d1NP2CK4bzb3upa0B5KWzzta+EGXb4fTzW3SetHuade8Fww7M9/yH8/7Lk

98、EQXCmXfeeePMlUvGNu4SrhdqpyKQkP24XQwiFFaqHthO7suKsr24XIZBTOC76O5BVuIWZRgYBea5qoYq/LYZZ5wxutgAEbmO3F0sQxZIOeBfBTlv7ueeEn65O1kc9ksy6jKQ2J133tn9agwsx05A4HOI5aKLLup+Zwx8pkpCnoQWLCGPxx57bLjqqqtifMjvW2655aI7NiX8DwcMORK688yfhBGzLBOOjiR0b9hx2RHhG7seHW46d/8wYvblw/9GEuqaaS81Iqy401F1xwfKJPTxW6+FF/75cnj55WfCeT/6

99、Vph+8hFhtZ0uCs8/cE6YcLa5uiwhQcw3w7GbTRDmXn3jUJfnrxs3/ezHYfmtTwgvGCdf+XP48ldmCXPsM2ZGfNNhXwmzfeXL4eY7/hwWX3z2MM/+V8ftNxyyYJh1/i+FG3pXrkZ89Nwfw/qLfCv85m9jfs87L78cXvjXy+HF+68Luy0xY5ho0i+FU69/Olzwy2+FEQtsEm6IJHRuFwmNCN895qr4mV7x3xfCcT/fPHyhq7PNusp3wsMvfhAev2yvMOKLS4RD72bLPBJ2XnFEWPlHh4VbLjw0jJhtqfDL+5go

100、yKlrVrjdQTHGVoUn/nJGGPmlrknABJOFfc+6r4tgPg7/fuGl8FLX77jrd4eGZWYcEaZZ9IfhyecfDauv+KUw5Y6nR7K95+TVwmyzTxbOfajnWI6YyzHHHDM2uJ2auIL4TsqIN+stAtlwl3Hjpc+yilhMniv1YnuaAQNrx+CU4ksGMIMut04ZZulKzQzVWIGZv+s0cuTI+Nq18Fq+D3CxsTBs68lVxU1qQO9pP+4zRL/UUktFi1e+DsEA91hq4nlIhjLOa3EaCjluNCXKfI6VO/nkk9f8jIYIWbvI1TkRS3hE

101、ZD7rXgM15BZddNH4Hrcjkhrq6HgSuqFEQv+85qgwwyzLhSMe+qCrx94Ztl9qirDlodeF5/50SphxtuXD0Y90Te8/Gh22XWKK8O0DrhwX+8Fn7CESrjr5LXDlutsFZ5+6s6w5FwLdJPQa+HoTacJIzc6JNRroLz58Oiw33fOCDc/3j1Tfv/x8N2lFggL7tNtCR22VJh/8c3CM68+F7ZebqGw8P7dltAhS4QFFtsoPFxXgv1/wvUHnBR+/pta7sh/hKPW+1I44uRrw19P2St8fv5vhWsYGy+cGb7xpWnC3mc9P

102、Ga3uvB+uO/Q7cI8I74Qdjji0fDaA6eFmbssoYPucaIPhp1GThE22+y8MLoM8PMsy4dDrsfCd0XfrjsFGHDPS+KLrRaePf+W8JP5pg5TDX5ruHhknvt3SdPCNssOU+49cnnws/WWjLMmiyhk9cI8829Qvhzj37LcZA3YnASg+ESMks3Y6WEMkCW3S2IhIWU3EXyWwS6fc7Awt1ThkRIFlICd599U+B8OAF5GJiJQVgXs8466yesDMF8JEApVwvydgzu3Gm1pM4IT/zu1VfHBJRV2fA5ooJazeTEBIBlVHSVyU

103、mq2j811emJFExQPLJ0v/jFL0aXa7n+nPwgJKV8FtId6uh4EvrzFmuH+T63fXi4e8z+8L4Lw5pfXDYcFGO+o8NWC8wb9jzt5RD+fllYY+aR4bB4394Wvte1fY8T619v5sUT9wgLjVgpXNg9bn/8wbvhxVffDO93f+9/KXcNGOl4W33n8y7D7fomHTc6jB3gq/XHuesP6Of66P7P77z3DVEUeFq258Mrz9n9fCM3/reuyirzO/MTIsPmrMGj/X7btcWHqlk7uO/F44c7WRYcndxpDTNXsvG5ZZ+cRQT2bBszef

104、E0494qLwr9feDC8/8nh49rXXw9vvvRVeeX3cSP7gHqeGW659OrxyzdFh0TnWC5d764VTwtdmWTb89sbe7cf3334pvPVOsjZeC4essVH4wdGPho9fvCFsMPNS4Wd3unAPhB0WnSeMOuGfXVPAa8P6My8dDrjXlbonbLfw3GGno5+Onx4PH74d3nzjlbFu1Ff+cFAYudih4eH/fBRee/ON8PpY0+mlcMW3Tgn/eO/tcO13VwsLfPfkuPWeY9cIiy58UHhKSKoHGGAEnJVyUfLFYEaMIAdOXGLzzTePVpDtZs+p

105、mnMiIS44gxvXneA0whKsNniZ7aYlIHxObEGZngQxDyTUygrR7QrKv1SqyGNV7TZEUI860H+RrnM7QKHmZO1ywXqeXpfh/iuS3FBG55LQB6+FB/50RthuvpnCBCOWDAede2N49LWuue6Hr4TTD9wnbPTDX4dTfrFT2HnLPcN9zJCP/x1O3f9nYeMfHRNOOezHYefv/TTc/1o91PB+eObey8NB31yy63tmDNsd/n9h9PNvhw9fvCUsOenMYZGv/rxrtnxBOPeG68IDkdM+CDed+quwzncOCaedcnDYZcMtwrWP

106、9O46+eitR8IZBywYJuwafEZQx434VFjk8KujJfCPm88N66+/Vzj+zJPCPht8M5x2zZjZ0dM3nR3W22Cv8NuzTgw/Iwe/rrclHt4PT912QFh+zq7vmGBEmLCrjVhqi/DHNz8MD523V5h2xPzhRweeE86/8pxw4W2Phhf1gfceD4fuuEv4/v6/Db/Z/bthj92ODc/W4Vq8/bQ1wrRzzB0OPvX8cMl554SLzz88PPyaX/NaOOfQ/cKGOxwVTj1yl7Dz5ruEu2LA7PVw9iH7hY12PDqc+stRYdQWu4a7Xv7k/Pxv

107、68M31zm8+Gr3z+467pfES47fZ9wzZ2PdF2nt8Keqy8ZJpti0/DbLuvl/KsvCDf9bYwl8crdfwibrr97+NVpp4YDNl4nHP9/d/Y6KTAT56ZR+FIRSqRw6KGHRssGEa288srRtZYEClRUYFAhTCA+OO644+Ln+fgRjViG14gtLXHicwLiRUjKdMx61+PKyOhkdC4Jvf9cuOKkncNuP/1p2Ptne4ZdDzw2/PG5cTPvs3+zf9h5j5+HB8dLB3o1nHnsvmHnPQ8MD9Xt6Xgn3HHJz8Muu+/Z9T17dX3fz8M5DzLf3

108、wx/OvTnYddddw6jRu0SfnVHcXmFD8PNFx0bRu28S7jpyfq+6IOXbgzHHrZb2GPPPcMeu+8Wdtvjp+G4e8dZak+N/r+w86idw9l/Hj/v6Inbzo/bz/1LPaut/ifcdvneYbeu32Lw3H233cLuv780xOHz8TvCSbvtGnbZuYsADj4m3FQk6HefCkfuv3PY4/Dfhn/WObF8/e93hZ/usWvXuY0Ke+9/cXhhPOJ6M1zw2wPDqF33Dfe9UjzgG+HcEw4Io3bbP9z/ai2aeCtccNqxYdddXPcDw6V/GWctPH3eqWHf3

109、bqIres7R517w3hW4YsPXhm3n3z1+AHmniA4jAwEyD2S6sqid+0QEZJCNN5LZVkQB2FCEizYT0a+A4XHTdMcT0ogXG5SEWIOYl7VAWnHd+6VSmPKCOj09Hx7riMjFYhyaFT9rvguBiFQDR3nKA2V5v3kmXDn6/kCmsmQSkY+R/ceuVivvaTP1QG62nKKaccKxdOELfwfUNZop0xvJBJKCOjBiQ5GvCTrDZVV+ZOo3hDKinJkJUEapyxYkDgnDJLgJmkmDtOwJlSShKrYDaVHGuoDPEoyxZw1Z177rljG9UdVV

110、ZVIc2MjE5EJqGMjBpQpBLBqDlGLMANRxWHOCjYqOSoubxHYkspR+1Ejm37DDPMED8rMTHBAo/iSo6b8mBqgYCBxcNaSk0VgYyMoYRMQhkZNaB6gQXR6gUZrsRDVgrLyPMqqIxAGpyRkZFJKCMjIyNjEJFJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKC

111、MjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJqMMxYsSIPrWMjIyeUdVvemoZ/UO+gh2OvnSC3GEyMnpH7lMDi3wFOxzlTtBTp+i1wzx+dFh2xLLh6Me7X2dkDEM0rU9duW18P7Ztr+zemFFGL6NSRrujqsOUW0Lx+ScwtsNkEsoY3ij3k9SPii2h+Hw8mNAl4omTuxFh2dyxKtHDqJTRCeitQ9TVYcbiyrBtJqGMYY5m9KnHr7wyFLvR40cvG0

112、Yse/R42zLGoLdRKaPNkTpB+RHKHaRWhxmHTEIZGc3tU93gacgkVIk6r2BGu6KqE9hWa3vPyCSUkdHcPjUGLKHsjqtGfVcwo21R7ATljlL1umdkEsrI6K0PlV/3jq5+la2gmqjnCma0MVKnKHeMqtfFbdXIJJSRUdVfar0ubquFK7fdtqtnZdRC71cwo63RUycov9d7h8kklJHRzD7FDZfV2T2jt1Epo81R7ASe96UDfRKZhDIymtanrtx2/DhQ1+tMSJ9Eb6NSRpujqhPU6jg9dpjuXIb02dxZMoYravWdWt

113、urECXZ3Z8Z17Jbrgo9jEoZnYBanQDK7/W0b0ZGxhjkPjWwyFeww6ET9KVlZGT0jKp+01PL6A9C+H9MzkFkostBfQAAAABJRU5ErkJgguiPgeS8mOe9kQ=(1)H1=_请标出该反应电子转移的方向和数目_(2)温度对CO2的平衡转化率和催化剂催化效率的影响如图1,下列说法正确的是_A生成乙烯的速率:v(M)有可能小于v(N)B平衡常数:KMKNC催化剂会影响CO2的平衡转化率(3)若投料比n(H2):n(CO2)=3:1,则图中M点时,乙烯的体积分数为_(保留两位有效数字)(4)为提高CO2的平衡转化率,除改变温度外

114、,还可采取的措施有_(任写一条)(5)电解法可制取乙烯(图2),电极a接电源的_极,该电极反应式为_11(16分)铝硅合金材料性能优良铝土矿(含30% SiO2、40.8% Al2O3和少量Fe2O3等)干法制取该合金的工艺如图1:(1)若湿法处理铝土矿,用强酸浸取时,所得溶液中阳离子有_(2)铝硅合金材料中若含铁,会影响其抗腐蚀性原因是_(3)焙烧除铁反应:4(NH4)2SO4+Fe2O32NH4Fe(SO4)2+3H2O+6NH3(Al2O3部分发生类似反应)氧化物转化为硫酸盐的百分率与温度的关系如图2,最适宜焙烧温度为_指出气体的用途_(任写一种)(4)操作包括:加水溶解、_若所得溶液中

115、加入过量NaOH溶液,含铝微粒发生反应的离子方程式为_(5)用焦炭还原SiO2、Al2O3会产生中间体SiC、Al4C3任写一个高温下中间体又与Al2O3反应生成铝、硅单质的化学方程式_(6)不计损失,投入1t铝土矿,当加入27kg纯铝后,铝硅合金中m:n=_(摩尔质量:SiO260g/mol Al2O3102g/mol)12(16分)现代传感信息技术在化学实验中有广泛的应用某小组用传感技术测定喷泉实验中的压强变化来认识喷泉实验的原理(图1)(1)制取氨气烧瓶中制取NH3的化学方程式为_,检验三颈瓶集满NH3的方法是_(2)关闭a,将吸有2mL水的胶头滴管塞紧颈口c,打开b,完成喷泉实验,电脑

116、绘制三颈瓶内气压变化曲线(图2)图2中_点时喷泉最剧烈测定NH3H2O的浓度及电离平衡常数Kb(3)从三颈瓶中用_(填仪器名称)量取25.00mL氨水至锥形瓶中,用0.0500molL1HCl滴定用pH计采集数据、电脑绘制滴定曲线如下图(4)据图,计算氨水的浓度为_molL1;写出NH3H2O电离平衡常数Kb的表达式,Kb=_,当pH=11.0时计算Kb的近似值,Kb_(5)关于该滴定实验的说法中,正确的是_A锥形瓶中有少量蒸馏水不影响测定结果B未滴加酸碱指示剂,实验结果不科学C酸式滴定管未用盐酸润洗会导致测得氨水的浓度偏高D滴定终点时俯视读数会导致测得氨水的浓度偏高2015年广东省深圳市高考

117、化学二模试卷一、选择题(共8小题,每小题4分,满分36分)1下列说法正确的是( )A漂白液中添加醋酸可提高漂白速率B石油裂化是为了除去石油中的杂质C淀粉溶液可鉴别加碘盐的真伪D蛋白质、淀粉、纤维素都能在人体内水解并提供能量【考点】氯、溴、碘及其化合物的综合应用;石油的裂化和裂解;淀粉的性质和用途;合理摄入营养物质的重要性 【分析】A漂白液中添加醋酸生成HClO;B石油裂化得到小分子不饱和烃;C碘盐中加碘酸钾;D人体内没有纤维素水解需要的酶【解答】解:A漂白液中添加醋酸生成HClO,漂白性增强,提高漂白速率,故A正确;B石油裂化的目的是为了提高轻质液体燃料(汽油,煤油,柴油等)的产量,特别是提高

118、汽油的产量,不能除杂,故B错误;C碘盐中加碘酸钾,淀粉遇碘单质变蓝,则淀粉溶液不能鉴别加碘盐的真伪,故C错误;D人体内没有纤维素水解需要的酶,不能提供能量,而蛋白质、淀粉都能在人体内水解并提供能量,故D错误;故选A【点评】本题考查物质的性质及化学与生活,为高频考点,把握物质的性质、化学知识在生活中的应用为解答的关键,综合性较强,题目难度不大2下列体系中,离子能大量共存的是( )A无色透明的酸性溶液:MnO4、K+、C1、SO42B使酚酞变红的溶液:K+、Na+、NO3、ClC滴加KSCN显红色的溶液:NH4+、K+、Cl、ID0.1 molL1NaHCO3溶液:Na+、Ba2+、NO3、OH【

119、考点】离子共存问题 【分析】A有色离子不能大量共存;B使酚酞变红的溶液呈碱性;C滴加KSCN显红色的溶液含有Fe3+;DHCO3与OH反应【解答】解:AMnO4有颜色,不能大量共存,故A错误;B使酚酞变红的溶液呈碱性,碱性条件下离子之间不发生任何反应,可大量共存,故B正确;C滴加KSCN显红色的溶液含有Fe3+,与I发生氧化还原反应,故C错误;DHCO3与OH反应而不能大量共存,故D错误故选B【点评】本题考查离子的共存,为高频考点,把握习题中的信息及常见离子之间的反应为解答的关键,侧重复分解反应及氧化还原反应的离子共存考查,题目难度不大3下列叙述和均正确且有因果关系的是( )选项叙述叙述A往A

120、gNO3溶液中滴加氨水至过量,先有沉淀后溶解AgOH是两性氢氧化物B常温下浓H2SO4能使铝钝化通常用铝槽车贮运浓H2SO4C硅的熔点高硬度大晶体硅可用做半导体材料DNO2溶于水生成HNO3NO2是酸性氧化物AABBCCDD【考点】浓硫酸的性质;酸、碱、盐、氧化物的概念及其相互联系;硅的用途 【分析】A往AgNO3溶液中滴加氨水至过量,先有沉淀后溶解,先后发生银离子与氢氧根离子生成氢氧化银沉淀,氢氧化银与氨水发生络合反应生成可溶性络合物;B浓硫酸具有强的氧化性,常温下能够使铁铝钝化;C硅做半导体是因为其导电性介于导体与绝缘体之间;D溶于水与水反应只生成酸的氧化物为酸性氧化物【解答】解:A往Ag

121、NO3溶液中滴加氨水至过量,先有沉淀后溶解,先后发生银离子与氢氧根离子生成氢氧化银沉淀,氢氧化银与氨水发生络合反应生成可溶性络合物,氢氧化银不能与碱反应生成盐和水,所以不属于两性氢氧化物,叙述错误,故A不选;B浓硫酸具有强的氧化性,常温下能够使铁铝钝化,阻止反应进行,通常用铝槽车贮运浓H2SO4,叙述和均正确且有因果关系,故B选;C硅做半导体是因为其导电性介于导体与绝缘体之间,与熔点高无关,叙述和均正确,但是不具有因果关系,故C错误;DNO2溶于水生成HNO3和NO,不属于酸性氧化物,所以叙述错误,故D不选;故选:B【点评】本题考查了元素化合物知识,熟悉相关物质的性质是解题关键,注意对两性氢氧

122、化物、酸性氧化物概念的理解,题目难度不大4设NA为阿伏加德罗常数下列说法错误的是( )A一定条件下2 mol SO2和1 mol O2充分反应后,混合气体的分子总数大于2NAB常温常压下,64 g O2和O3混合气体中含有原子总数为4NAC1mol Cl2与NaOH溶液反应,转移的电子总数为2NAD标准状况下,22.4L N2含共用电子对数为3NA【考点】阿伏加德罗常数 【分析】A、SO2和O2的反应是可逆反应,不能进行彻底;B、根据氧气和臭氧均由氧原子构成来分析;C、氯气与碱的反应为歧化反应;D、求出氮气的物质的量,然后根据1mol氮气中含3mol共用电子对来分析【解答】解:A、SO2和O2

123、的反应是可逆反应,不能进行彻底,即不能彻底反应生成2molSO3,故混合气体的物质的量大于2mol,分子数大于2NA个,故A正确;B、氧气和臭氧均由氧原子构成,故64g混合气体中的氧原子的物质的量n=4mol,即个数为4NA,故B正确;C、氯气与碱的反应为歧化反应,1mol氯气转移1mol电子,即NA个,故C错误;D、标况下,22.4L氮气的物质的量为1mol,而1mol氮气中含3mol共用电子对,即3NA个,故D正确故选C【点评】本题考查了物质的量的有关计算,难度不大,应注意的是物质的结构特点和公式的应用5常温下pH=1的乙酸溶液和pH=13的NaOH溶液,下列叙述中正确的是( )A乙酸溶液

124、中水的电离程度比NaOH溶液中的小B乙酸溶液中c(CH3COOH)大于NaOH溶液中c(Na+)C若两溶液混合后pH=7,则有:c(Na+)=c(CH3COOH)+c(CH3COO)D分别稀释10倍,两溶液的pH之和大于14【考点】离子浓度大小的比较 【分析】A酸溶液和碱溶液都抑制了水的电离,盐酸中氢离子与氢氧化钠溶液中氢氧根离子浓度都是0.1mol/L,所以对水的电离的影响相同;B醋酸为弱酸,醋酸的浓度远远大于0.1mol/L,氢氧化钠为强电解质,则氢氧化钠的浓度为0.1mol/L;C溶液为中性,则c(H+)=c(OH),根据混合液中的电荷守恒分析;DpH=13的氢氧化钠溶液稀释10倍后,溶

125、液的pH=12,醋酸为弱酸,稀释后溶液的pH2【解答】解:A常温下pH=1的乙酸溶液中氢离子浓度为0.1mol/L,pH=13的NaOH溶液中氢氧根离子浓度为0.1mol/L,两溶液都抑制了水的电离,所以两溶液中水的电离程度相等,故A错误;B乙酸溶液中氢离子浓度为0.1mol/L,醋酸为弱酸,则醋酸的浓度远远大于0.1mol/L,即c(CH3COOH)0.1mol/L,而pH=13的NaOH溶液中c(Na+)浓度为0.1mol/L,所以乙酸溶液中c(CH3COOH)大于NaOH溶液中c(Na+),故B正确;C若两溶液混合后pH=7,则c(H+)=c(OH),根据电荷守恒可得:c(Na+)=c(

126、CH3COO),故C错误;D氢氧化钠为强电解质,pH=13的氢氧化钠溶液稀释10倍后,溶液的pH=12,醋酸为弱酸,稀释过程中醋酸的电离程度增大,则稀释后醋酸溶液的pH2,所以稀释后两溶液的pH之和小于14,故D错误;故选B【点评】本题考查了离子浓度大小比较、酸碱混合的定性判断,题目难度中等,注意掌握酸碱混合的定性判断方法,明确电荷守恒、物料守恒及盐的水解原理在判断离子浓度大小中的应用6下列实验合理的是( )A用HNO3除去铜粉中混杂的ZnB通入足量Cl2,除去Fe2(SO4)3溶液中的FeSO4C依次通过溴水和碱石灰,除去CH4中的乙烯D通过饱和Na2CO3溶液,除去CO2中混杂的SO2【考

127、点】化学实验方案的评价 【专题】实验评价题【分析】AZn、Cu都与硝酸反应;B引入新杂质;C乙烯含有碳碳双键,可发生加成反应;D二者都与饱和碳酸钠溶液反应【解答】解:AZn、Cu都与硝酸反应,应用稀硫酸除杂,故A错误;B应用过氧化氢除杂,否则易引入新杂质,故B错误;C乙烯含有碳碳双键,可发生加成反应,可用溴水除杂,故C正确;D二者都与饱和碳酸钠溶液反应,应用饱和碳酸氢钠溶液除杂,故D错误故选C【点评】本题考查较为综合,涉及物质的分离、提纯,为高频考点,侧重于学生的分析、实验能力的考查,注意把握物质的性质的异同以及实验的严密性的评价,难度不大7下列实验操作、现象和结论均正确的是( )选项操作现象

128、结论AKIO3溶液中滴加HI,再滴加淀粉溶液溶液出现蓝色KIO3氧化性比I2强B向Na2S溶液中滴加盐酸产生气泡Cl的非金属性比S强C将一小块Na放入乙醇中产生气泡乙醇含有羟基D沿杯壁向水中加浓H2SO4,搅拌烧杯外壁发烫浓硫酸溶于水放热AABBCCDD【考点】化学实验方案的评价 【分析】AKIO3溶液中滴加HI,再滴加淀粉溶液,溶液出现蓝色,说明生成碘;B比较非金属性,应根据最高价氧化物对应的水化物的酸性判断;C不能排出CH的影响,应从量的角度判断;D烧杯外壁发烫,可说明溶解放热【解答】解:AKIO3溶液中滴加HI,再滴加淀粉溶液,溶液出现蓝色,说明生成碘,由氧化剂氧化性大于氧化产物的氧化性

129、可知KIO3氧化性比I2强,故A正确;B比较非金属性,应根据最高价氧化物对应的水化物的酸性,可根据硫酸、高氯酸或氢化物的稳定性判断,故B错误;C不能排出CH的影响,应从量的角度判断,故C错误;D沿杯壁向水中加浓H2SO4,搅拌,烧杯外壁发烫,可说明浓硫酸溶于水放热,故D正确故选AD【点评】本题考查较为综合,涉及物质的性质的比较、检验等,为高频考点,侧重于学生的分析、实验能力的考查,注意把握实验的严密性和可行性的评价,难度不大8四种短周期元素在周期表中的位置如图,其中只有M为金属元素下列说法不正确的是( )A原子半径:MXYZBM的氯化物是弱电解质CX的最简单气态氢化物的热稳定性比Z的小DX的最

130、高价氧化物不溶于任何酸【考点】位置结构性质的相互关系应用 【专题】元素周期律与元素周期表专题【分析】根据元素在周期表中的位置可知,这Y、Z处于第二周期,M、X处于第三周期,只有M为金属元素,可知M为Al元素,则X为Si元素、Y为氮元素、Z为氧元素,以此解答该题【解答】解:根据元素在周期表中的位置可知,这Y、Z处于第二周期,M、X处于第三周期,只有M为金属元素,可知M为Al元素,则X为Si元素、Y为氮元素、Z为氧元素,A一般来说原子核外电子层数越多,原子半径越大,同周期元素从左到右原子半径逐渐减小,则原子半径MXYZ,故A正确;BM为Al元素,对应的氯化物在溶液中完全电离,为强电解质,故B错误;

131、C非金属性OSi,水的稳定性较强,故C正确;DX为Si元素,对应的氧化物二氧化硅可溶于氢氟酸,故D错误故选BD【点评】本题考查结构性质位置关系、元素周期律等,难度不大,推断元素是解题关键,注意对元素周期表的整体把握,注意对元素周期律的理解掌握二、解答题(共4小题,满分64分)9(16分)糠醛()与丙二酸合成香料过程中发生了反应:(1)糠醛的分子式为C5H4O2,1mol糠醛最多能与3mol H2反应(2)关于化合物的说法正确的是BDA核磁共振氢谱中有4组信号峰 B能使酸性KMnO4溶液褪色C能发生加聚反应和缩聚反应 D能发生取代反应和加成反应(3)芳香化合物是化合物的同分异构体,能发生银镜反应

132、,遇FeCl3溶液显紫色,任写一个的结构简式(或、)(4)下面是由ClCH2CH2COOH合成丙二酸二乙酯的过程:ClCH2CH2COOHHOCHCH2COONaHOOCCH2COOH丙二酸二乙酯,反应的条件是氢氧化钠水溶液、加热,反应的化学方程式为HOOCCH2COOH+2CH3CH2OHCH3CH2OOCCH2COOCH2CH3+2H2O(5)水杨醛( )与丙二酸可发生类似反应的反应,写出有机产物的结构简式【考点】有机物的合成 【分析】(1)根据结构简式判断含有的C、H、O数目,形成其分子式;碳碳双键和醛基都能够与氢气发生加成反应,1mol糠醛分子中含有2mol碳碳双键、1mol醛基,能够

133、消耗3mol氢气;(2)化合物中含有碳碳双键、羧基,根据有机物官能团与性质的关系判断;(3)能发生银镜反应,该有机物分子中含有醛基,遇FeCl3溶液显紫色,分子中含有酚羟基,结合化合物的结构简式写出满足条件的有机物的结构简式;(4)根据制备流程可知,反应为卤代烃的水解反应,应该在氢氧化钠的水溶液、加热条件下进行;反应为HOOCCH2COOH和2CH3CH2OH发生酯化反应生成CH3CH2OOCCH2COOCH2CH3和2H2O;(5)该反应的方程式为:+CO2+H2O【解答】解:(1)分子中含有5个C、4个H和2个O,其分子式为:C5H4O2;1mol中含有2mol碳碳双键、1mol醛基,所以

134、1mol糠醛与完全反应消耗3mol氢气,故答案为:C5H4O2;3;(2)分子中含有3个碳碳双键、1个羧基,A化合物分子中含有6种等效H原子,其核磁共振氢谱中有6组信号峰,故A错误; B该有机物分子中含有碳碳双键,能够被酸性高锰酸钾溶液氧化,所以能使酸性KMnO4溶液褪色,故B正确;C含有碳碳双键,能发生加聚反应,但是只含有1个羧基,不能发生缩聚反应,故C错误; D该有机物分子中含有碳碳双键,能够发生加成反应,含有羧基,能够发生酯化反应,酯化反应也属于取代反应,故D正确;故答案为:BD;(3)芳香化合物是化合物的同分异构体,能发生银镜反应,分子中含有醛基;遇FeCl3溶液显紫色,分子中含有酚羟

135、基,满足条件的有机物结构简式为:、,故答案为:(或、);(4)根据流程ClCH2CH2COOHHOCHCH2COONaHOOCCH2COOH丙二酸二乙酯可知,反应为氯原子被羟基取代,卤代烃的水解反应,反应条件为氢氧化钠的水溶液、加热;反应为HOOCCH2COOH和2CH3CH2OH的酯化反应,反应方程式为:HOOCCH2COOH+2CH3CH2OHCH3CH2OOCCH2COOCH2CH3+2H2O,故答案为:NaOH水溶液、加热;HOOCCH2COOH+2CH3CH2OHCH3CH2OOCCH2COOCH2CH3+2H2O;(5)水杨醛( )与丙二酸可发生类似反应的反应,则与丙二酸反应生成、

136、二氧化碳气体和水,反应方程式为:+CO2+H2O,故答案为:【点评】本题考查了有机合成,题目难度中等,明确常见有机物结构与性质为解答关键,注意掌握同分异构体的书写原则,能够根据要求正确书写反应的化学方程式,试题侧重考查学生的分析、理解能力10(16分)一定条件下合成乙烯:6H2(g)+2CO2(g)CH2=CH2(g)+4H2O(g)H1已知:2H2(g)+O2(g)=2H2O(g)H2=480kJmol1CH2=CH2(g)+3O2(g)=2CO2(g)+2H2O(g)H3=1400kJmol1png_iVBORw0KGgoAAAANSUhEUgAAAaEAAADJCAYAAACKeI1BA

137、AAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAF4NSURBVHhe7d0HmCxF1QbgCwaSgCQJEn4kS5AcL0FAkSxJggoISBAVL1mQJFEEQfgFJIjk9BMkZwQDcMlRMiggEiRKklD/vnW37u3b9OzOzs7szuzW9zz1zExPT09PT1d9dc75zqkRISMjIyMjY5CQSSgjIyMjY9AwloTeeeed8OSTT47XXnzxxfDvf/87PP/8859474UXXuj+5Bgce+yxYZVVVgkvv/xyOOqoo

138、+LzWvjjH/8YvvrVr4ZHHnmke0sIm266adh99927X2VkZGRkDAeMJaH7778/bLjhhrFttNFGsc0xxxzhc5/7XPjyl788dlva5+CDD+7+5BjsvPPOYcSIEeGYY44Jv/nNb+Lz0aNHd787Ps4+z4/m233da9JYSpp546jBw5svtVfXj77bfDxRdfHP7yl790bxkHv+ell17qfpWRkZGR0Y7o0R234IILhqmmmirceuut3Vuq8dRTT4VFF100bLPNNuHjjz+O2w499NBILLfffnt8XcQFF1wQSei+7r3hLC7LPPH

139、lZbbbXuV9U488wzo8UGr776alhnnXWiRTXLLLOEs846K24H5Lb99ttHiy0jIyMjo33xCRJ68803w1prrRWbwX3uuecOW2yxRbR+Vl555WjFlHHSSSdFUnn88ce7t4Tw7rvvhoknnjiS2B133NG9dQwSCbFinnjiidhmmmmmSCrwxhtvjN3+3nvvxW3cgmussUYkH3jsscfiMZDPAgssEFZaaaW4HfFssskm4dlnn42vMzIyMjLaF58gITEdg/u2224bB3yD/9/vdw5513xu177bVX955jcNVVV0WL59JLL+3

140、eMg5cYtNOO22YbrrpwkUXXRT+9re/xe3/93/F48lbpTce8hq6aWXjqSC+NZff/24/emnn46f+fGPfxyuuOKKsZZWIiHWERJiEcGJJ54Yfv7zn8fnGRkZGRntjU+Q0CuvvBIH9wMOOKB7yxi89dZbn9jOkplkkknCTjvtFPbee+/ws5/9LJLUqFGjwi677BLjRocffniYcsopw+STTx5uueWW+LlkCd17773xNcw/zhf/7nf8Juu+0WjjjiiO6t47DllluG66+/vvvVGHfceuutF1ZcccUw66yzRpK75JJLxp

141、7f5ZdfHo/1hz/8Ib7OyMjIyGg/VJLQpJNOGuadd96wwQYbjG3cc4jjoIMO6t4zhHvuuScSC4JCLNxvM844Yzj/PPD8ccfH/c/8sgjwwMPPBAefPDB7k+NIyHWVcJss80W1l577e5X4wPZ7bPPPmNdcQlcfpdddtlYgcNmm20WXXjUdwQVP/rRj+JvQUgZGRkZGe2HShKacMIJ4wD+zDPPjG133XVXJI6eXF1UdMkt9p/Cfuf8ghh8TXRSQSuvvuu7u3hGjN1BImILKq4xTBDccS+ijj+Jzx7/mmmvi4/+7/9

142、275WRkZGR0U6o6Y7bb7/9ureMwWuvvRa3l910RZB0L7nkkvG5WJL9qeTKSCT0pz/9KbrMPHLHFUlIPAmpsLJOPvnksP/+3e/80kQISDNv/71r/F1Ekpw0XlklWVkZGRktB9qklDR7QZUarbXIqF99903zDDDDFGSTdwg3mP/KvK48MIL43tccMQISR235pprdu8RokvPPtR4CIY4ogr/e9/Y5JrMSfpX/6V1TIiRfJbSon1mZkZGRktAcqSejTn/50WHfddcMZZ5wxtqUE1Cp3HKJJBAT2/8xnPhPdepRwZa

143、RkVcmp4jpADUeYkL5PzpF9TjvttFiBoRao5cqxIvjwww8j+XjMyMjIyGhPfIKEkkR78cUXD3vsscfY9sMf/jBuZ/EUQRVHBFBOSlXG55xzzul+NT5ItVlar7/+eveWED744IO4LX0fV5zXzicjIyMjY2jiEyTEvUVdpm5cGTfffHMUKRRx3XXXjad8y8jIyMjIqBefIKGMjIyMjIyBQiahjIyMjIxBQyahjIyMjIxBQyahjIyMjIxBQyahjIyMjIxBQyahjIyMjIxBQyahjIyMjIxBQ0Mk9P7778eEUks4/O

144、QnP4nLNqQltnfddde49o/SORkZGRkZGT2hIRJSl01JHk0VBcs+WKpbnTaleL71rW+FhRdeONdsy8jIyMjoEQ2RkIXrVE5Q4fqRRx4JW221VTjwwAMjIdkGasl94xvfiM/rgWoM6sT9/ve/zy233LqaGotWEM7IGMrod0zIWj1XX311XE31U5/6VCz7A5boZhXVA2sAWQKCaw/B5ZZbbnvFRR71iU6HtcXUgCzWgeTSL+ONN96I+1gGJhceHj7oNwlZLgF23nnnSELvvPNOfD3XXHOFlVZaKT7vDYqXqqKdkZ

145、ExDhZlNLnrZFgr7Itf/GJYZZVVYrvqqqvCeeedF+PGRajSb+Jqn+WXXz6OK9Ywyxj66BcJWbbbWj9IhEgBCaWlGZBQIqje4PPf/OY34zISGRkZY2AZFJO7TsWtt94aXfSsOeOC9oMf/CBu+/a3v929VwjHHHNMXPrl1FNPjftYpFJMGRmxijKGNvpFQtb8ueyyy+Lz7bbbLt5c1vcBawMtu+yy8XlvyCSUkfFJdDIJseKmm266qJYtg4ApeT4QkPXLWEdFvPTSS3ESa7Xl5557rntrxlBEwyTEVP7+978f40

146、Hw1FNPxdnLlltuGdcYYoLffffd8b3eMFRIyKztoYceGtsefvjh8M9/jOKOIrbrafkNwPSfv7558f6yHU4q9j2BgIQ6kPxtATHsK3W5+3rfJK/3fMkJOkJjpkHgoFHJ5NQWn+sqk+zdu666674fM455wwzzzxzfF6GZfkdIy3bnzE00TAJWXOImq0YQJQbtNZaa4U11lijbgKCoUJC/N2IeYcddogydjO+ySefPMw333xh4403DjvuuGO0HjfffPPxVoOdZpppoi/cNqpCM8CLLroott/97ndj25133tn9iRB

147、+9atfxQ5adFdQGE422WThpptu6t4yPhz/85/fDyvp59+OkwxxRRR1dgbWLsmFfz7GQOHTiYheYTuz8cff7x7SzUsnuneqsIRRxwRj3HPPffE15b4r7XMf0bnot/ChGZgKLnj+LV/+ctfdr8KMU5mVgiWRkdURVAXIp5f/OIXcT+E5fm0004bJppoomhVpnbttdfGzzzxxBNhqaWWimT29ttvx22AhHTa8nckUB95f5lllokLEXpuaXbYbbfdxh6fBScgbpuYnwFlyimnDJNMMsnY7RpfvxVwq5ROGf3HULWE

148、iqjHEjL5OvPMM+Nz7cgjjxwbe87ofLQNCa233np1uYb6AwM215f4le/TyQVPLSOeQE7K9bTtttvGffiuzcTqVer8+c9/jtZGGtwtfZ5ISAdiqYwePTq+JkfVCeeZZ55oCX32s58NV1xxRbjgggvC1FNPHS6/PK4XxEHHHBA3NexNtxww9ic57rrrhsJzPetvPLKcdu5557b/akxEAyWWOy3UDE6xtFHHx2vu+df+MIXwj/+8Y+xZIaA/J4LL7wwEqWJAuvst7/9bSRPuSxW1s1y2tagk0nIvasf7LPPPt1bx

149、kH/SjGgww8/PE7U/vCHP8TXCaz2VVddNTYCKPcfRd1CCy0U703u/4yhgbYgIYOYnAiJr62Ewd0NfMstt0TXoRmV19xTCeecc07cpgyRfZCWwKkBuV44vmNsv/320eWlI957771hggkmiN+ZYjY63hZbbBEHmumnnz66JQRzfVbjqjj55JPjYIQI+NHFkHbffff4vqAv0njzzTfjjNM2FpN9UswpgRsDyaywwgrxtcCv3+X7qZBYOaw4nxM7Mgu1v3OUjOzYzuM73/lO/NyXvvSlSFYZrUMnkxBwC6d70j2li

150、S9ySV955ZXde4Vw2GGHxQmYSZN93JtLL710zB1MllRyMbO+TRBNFjOGBtqChMBN95WvfCXeYLfffnv31ubhxRdfjLMqFgK3VAJyEa8BHYQVwbowsCcY9FkrKZjaG7izdD7HmWmmmcJyyy0XB20DexmsCfvqiElhmNqMM84YCWyqqaaKJHHjjTeGo446Ksw+wx9mYfpCE+RyLvNXGIjqr5bUiKMIKV5P2vf/3r8XtdAy629F1ldRKwelg/3t96663jo2to9lrL5ZfRPHQ6CcH1118fJ1Zf+9rXYhMvrurfJmd

151、zzDFH3MekiLu5mNwKXrOGbrvttu4tGUMBbUNCbj7W0KSTThrNeG4wgfB6lGL1gCrNIHr+ed3bxmHZNpzu9nH4FuEgdz2U045pXtLiBZSURTARy3Ooulk9vVIdLDEEkuEE044IX5P2ufJJ5+MVsYss8wSj33wwQfHmnuep7booovGYxMqIGggWV1ggQXiMe3DDWfGKP+CCy8Vk9UMAFwfX/3qV+P7LCtkD86F645w4owzzojbinDdWYhIkGXn/1h99dUjwSJlAozshmsthgIJAdea+1DrqbAxkrEP1Wa534uD

152、8ioQ9xgXchxy6KCtYkJm5wY5A6Y8I4Os+nOXXHJJv+NFXH2OR2VWC3zP9jn99NO7t4xB2s5doHMk91Qq3AoGdYo4bbPNNouDtEcuOFaI15tuuunYfQT0uRR0SoVg99tvvxh8NVN07GRxACHB/PPPH58ri+QcfN5+4jtiTLPNNlvspH6fOI2m4wL3BiA1lh4CFYvy+RS7KsJAoNqF2ahj+G8kE7KsiCUIGBZZZJFIgOXZakbzMFRIqL8wwWMBuV9To+7MGBpoGxLi9inKllkKXFRf/vKX403HGmBNFPfpC+Tm

153、OA5ZeRkpwfb+P+ygcWUT6LDJkUSEEBGEbQukJE0888VhhQhXM6LjFHJMVk9xeRAQsDkl/XGiJhADhsX7sx+3GWnGtjj322HheyAhplKXayIwrj1XF6hLbqZJoI2zbU/a659R6yqpIQBZHQmTUfqzEjNYgk9AYuA+lJBDDuMePO+64louYMgYObUVCVXJOcRquLS4oAzoLyaDIZO8L3MgC+Qb84vdItv31r38dn1OMGdS5A4tqOJYMy8A2N396j2vr0Ucfjc+rgGCcM4FCLbCGxHu4IgX699xzz0guco24HZJ

154、KCBmDgZ+4gKKI65KQAlEceuih0UJjJTlfbrsyuOOUUxJbYsGwwPbdd9/4HhUcF5/4ku9muYlpccl57rrNOuuscTJA4bfBBhvE7eJYZddJRnMwXEjI5E/B1ozhibYnoQQDnQGXO4mSBlFwSaVEtnogtmFwFgQ98cQTY8kQg37RpWQQZnmYedmHHNl3mn0lIEAuO7OynuCc6yEhLjsycYl9BnrXgsVCzUfqynVG2AAI0HXSaX0u+ca50Fg6CIzQospiXHDBBaOLDcSz7HvIIYfE14jJa3Ek14OQo9icA9J9/fX

155、XI1lz8dlu32RJZjQXw4WEWOxJMJMx/NAxJFSEDH7uKtYA5dj3vve9PmXzM+tZAOIwxWTPIhCMfcRMyEaLkExqwOY6K+fiFIGE0n61gITEWbjIqOGSVUZA4bOpFUURkGJCRQJ1/SjxWDBVgVsWEvUcIBKWjNcsH6IDx6slu2aBIrmMgcNwISF9V/PGJ7oSBICs2+lgQygrA3uojXXXDMGzWsRSzMgIGqgl9PDjUYaXQuIgAXD2qoF58rKQKrlGllyiyjsqqThSpo4h7LFw7qjequqPkyVJ6ZVhFmoBFlCBgKH

156、Wr52LkAuuIyBQyahjOGAjiWhIgTqxXsEzs3mDZhnnXVWw8frCc6VS0yMSUuL+NVCPfs0QprOw7HLrrBa2/sLVl2VdZXROmQSyhgOaAoJld1VfUV/SShBgJ47K5X2EGinFiuKDDIyOgXDhYRY+9nKHr5omIRk4ZMUSzJNMl9KMcFrjXunXjSLhBIEzOXcyIshVZZDQ+7cW0XfgYBKDEQFuRpwRm8YyiTEqibwIfW/+OKLYz5gWjKkGOfMGPpoiITUMRPrQBwy8ymmxC8Er8U/BP5l79dLREhI4mOxVE4z4LiX

157、XnppTACVO0PIQFJMAee9gYb4DQm4SgmD8f0ZnYWhTEKEMSaG4qs8FyqLpATpcsWSjKGNhkiIZbHYYot1vxqDVEUgQR0oeSn1wIAsME9UQM7MUmh2SZhUX42AQX6MmZe6ba0UMRRBBWdAScslZGT0hqHujiOiMWYUm6K5ksMzhg/6TEKky9RoMvi53VIhS1UBWBpmOCAp0symHiAhSZHUW45HsdWq3BMuOdUFWG2SPYkZrP8jntQqKEdEOEGFlpFRL4Y6CZmYpdy21FLeWsbwQZ9JSF03NwvXmZmMPB3SYouc

158、9YeEuOO49QYKpMiWLhg5cmTM02Eh+Q3NrtBLFMEC4xbMyOgLhoMwQR80bhhTVKpvh7htxsCizySUVkxMlopyMsjG6ptupuRGY2HUm9yIhJopTOgLKPtUJZBQ6vzl2KgYTdiQCLVRmOkRb/RFpNGp6K9CcqAg6ddyIVWVw9sNw4GEuMNTRfiqYroZQx99JiG1y9wwlC0ULhZjM4BzadmuKrScEoHG4mJxPWEwSagI1bKRqfVP1EczM1NORzHVvroHWYrt7IJzzVUAV6yUUo+isAz/pff46F2bKqJR9Vw5oE4J

159、JqtTphwTC96Cge2M4UBC4P+QsN1MKwi58dRktD/6TEIGLzNJFpBlphW0NONnASEjsSLr12i214N2IaEELjQdg4UnbqRGG+EFi6ae6r1UcFxw5SWL2wlI0v+lXJDJA+uvDEoldfqIUFSmMLkoAjlRHVrioWw1iuspPVQuNKtGnQX0NLUAEwg2LENRRYa9wWfTMYvrRVm90zGrqkeoiG4C1dPSHoONoU5C7hmJ3OoQqhYPyKMZoiQrAOu3Js2dBGPhcEOfSSjh6KOPjgH+sqxa4U/b6yUgaDcSSmD96ByjRo2K

160、qh2DtVUf/T55UlXwu1lAqVO1O9SgkyhIqFFcctkgjVz85rSuUREsKMVW7VMEa0m1iuTnt+REWu5BQVYWpu2a6wT2Z32S0hO79IWIuE0RZTpmqgqOXJCMwpj+syoisjqtRf3aFUOdhKwRVI6Vbr755uGOO+7oftU4WOfuB3UUOwG8SsbU7373u5X36lBGwyTUTLQrCRWBdFTUTktKWF/HWvlEGck6MouT+9BJKjjuRxXBdVgFXRNYPqxBA3x5zSEz1aSSVDKpiFtvvTUWSlVk1j6Om8QeCqaS37OSUrKuayWh

161、WO6ZWXFaRbbeGJOFA812FV5Nx3QsMnxKS9abmENVfJL7J1Vjb0cMdRJirZSXlVf/Ue5hf8GKd+8Z1DsB7l2Wm3NuZ+u8Fcgk1Ec4V245eU0KiLppDHAWyzOz7zQRAkUga8ISF2J45OSy2CUdc3OxaMokxMVmQTzxsnKszIwuWcFIwPWRyMwakjfmtYXxElFbQNC2tC4Tt6dj1+OSYY2ZFPg892865kknnRS3JVKygF8ti8f2emOXA42hTkKq37OOizAOmMj0F51GQvpHsugpBocTMgn1A4Lc3I9k3m4eyrot

162、t9wyKq8M5p0AFRwk8lqXyW8Q52FJJKWSbWUSQlK2W9KiJ0gG5g5jKVom3DpOavtZ5tznWWFmwp4jKjBoiDPVQ0KEFa6/Y4pppXM1IfAcSYH3uObK8B2+q10HqkxCjaMTSUiqiHPWb4YTMgk1AfKbrExqQBfbQEazzDJLlLPzb9cjZhgsOGfW25133hlzpbjQCBbU8UoL39UiIau51gJxx8wzzxxdfWUY/A1A3ieZdqxGSKgIrjyL+UkN4DZ1zN5ICFhC6623Xver9kImocaRSahzkEmoyTD4mokLshv43FQs

163、JSuzkjm3G8SwUtULcSDnu88+8TXaVE+8vsiVJewvScJrMFFDUEg0qiK8WyyySZjpf0ptoQAvU77E0tQvJHJ1wNWFnJ0jKTMQ046eBlW2hUTQrztiExCjSOTUOcgk1ALYdE9LigxEDfXDDPMEOMTYhaNSJGbCdYZZRupveXLEQqRhRgLUMeJezlv1cgl3SaJtpgPUQbpdlmCjTyQMGsGoRhojj/+Fiuf4sttoiDqrgRlyVi5tIkHPAetyCV3gEHHNB9tBCXOXcORx11VPeWcbAOjc9x6zmmvB+WFTcdcQNStV

164、w5i6vKdWhyQPXYrsgk1DgyCXUOMgkNAFhHFD9KHhn0uOtYSeuss04caAzkraqVVwvcVwZ9Hd5gLiYE6VxYHnJ6uMmQE6uh6CLzOR2mvLw5JRxim2mmmSIR+a3ypm644Yb4nLtSiSakgjgAIRN3GDjKeR1kq76HjLsM29K1dEykls7R70BuaU2pMsSSkJPf2K7IJNQ4Mgl1DjIJDTDkVXEv6RwqMrjpDNY6pO2dUjsLUbHoKNmKikDkRqruP03NvprniKe8JDkgj6rYGQsMiVS582zr6ZjeKx+T4o/lRGLPSm

165、pnZBJqHJmEOgeZhAYRbjwSZfkzKRnWOk3yJ7iVZJK3O37zm9/EqhJXX31195b2BjejmBEhSbsjk1DjyCTUOcgk1CaQ02KAFDOiUpMIynVFuaWjWnGyXDanXUABWKuCREbjGOokZO2wYpklMA489NBD3a8ah8XyDOjikp0AHpJEQmViHurIJNSGII8mM0ZASuO4MVUVEEMiIDCLb2fZd0Zz0CkkJLZIIMKC70uz8GXZgjYOWHCyav+NO5W/Yawper9dmv6eip1JT5atc9AN/8pQVGrkUmozaGSAJedwUjA303

166、K/WWmR+hAGED4kNE6cJVwmVLbFZOQn3766agSVNDXY1mk0V90CglJbFZ/kJy+L+1rX/vaJ4r8GgeIRqr270tL8VbKz6r3+9qkMYh9iiN6XrVPfxpFqYmmc/afV+0z0G311VeP/0WrkUmog0BFxl9+8MEHx8KgyEhBUPEkxTjdyCoT9KV4bEbvYHUiGQOEWXqyQrlQqOv8FyzXZotKOoWEJDP3Vj2jCsi7yh1Htt9fpLQIZaCaBRMQwptWgLAmueOaPZlpFGoqUqe2GpmEOhiPPfZYdM+pFKxoqKKdbmJLUFg

167、mWRFR+9SDt154JFpc2hU39r+A5FCDYq6urWaGWLQ+VX5G/s1Gp5CQGoKNLJnQKcIEyk4koUiuArypEkcz0Y7CBInsSmK1GpmEhggIFy6+OI4ezEzTwMmtZ3qDQYzddrsV8Zzdx8Z1lhmrrGfGTHJ58NGB58e/vZu9w4ZsbKDygsSjl2jVVdddewyJqo0NGP2XkYmocbRTBKSCvDyyy/HXDfKSoTRbGQSahAWpZLUqOmEyU0hT0SSY73rYmQSai7M2szWuDq4PNRT47ajuqO4W2SRReINduudd4ePnrk5rLno

168、mJt/PaZsPUxN3Z1wO6DDnOo4uB6SsZNayIhd33ANValodnoFBKSx2WNrb6ikyTaaiD6L1Jl9majHUlIhX3VTlqNhklIRroKyWnQsqIqMuI3teKqwPm8884bg7e9IZHQcFvMaaBgJkfg4OYmi7XI27TTfSGs/+3Vw8MH7hCm6f4Py23aaXfpGmS7DzLMgYROOOGE+FxgWs0518h9i4xa4aIZSBKqSgZOIL9X8aNWM9Ar8dTXyvGdRELisZawlxdXz5jWV7QjCSlubLyo+s/LTQFkbsta6On+apiEzArFHgRkX

169、TRBWZaQbcjpX/6V9ToW+GwvPBZGUiIRNEf/e6777ZtPsxQgeoEt99+R1e7KVz7ww3CFN2kU25fmGar8Ow/XgvPPfds9yeHL5BQcVZIJaUCt+tkMTKVxZuNgSAhxWWVP+pJ8s8K0D97a33N7+mkmBAY44444oi646x9QTuSENKt+p+rGm9AT5XvyfjVi8QLZTREQhQiAt/cEmbVqYglN5CLmIpN6qhe95adjoTo0i31qwYYOWxPPyijeXjg4O1rWkLzL/qrcMmlfwzTTTttjC2R4fL9iy2Z+Rt4uV6HA8SEys

170、tSsIiSa67TSEh8wyRxkkkmiYq/wfgfO8kSkkhOlWosa4VCrh1JqJlgQfptFp9U7qtoNTdEQg6A+axIaUVOB6cQYrabFfqzQKDce2l551pIlpAkTcfuaVaW0WT8+4GwwzpTxf9pvPaZL4SDrnksPP70s2H77baNijDVtK0mmzoLS8BNRQZr4mHQZJpzyw4VmTg3guWWLTu+9tprR/VgERSI00wzTUtmx80mIYOnpdVN+NIyI5qBnxdCfKuq6Z+tQCeRkBwh45rag5SRPbmeGkGnk5DrUXXvpIaEUjKupoI993

171、Zcs6z7GP2CJQEcmL5dQctGSMjNl2NCg4N3/nll+N3JJ8ZcDxMLS3ufePlt4V8lNy7hiGrbEtlUrLbfmmuuOTaJVlOMlRDCTUY6zq/sBmQ1WLW10yxcJOS3Ugkh2qqll82OWyGqaTYJqUeocnj6r1KTZ8aNLpZb1c4555zuIzQXnURC7gPjmDWyWlFkuNNJiJuNQVJ1/2hSSBgoxfsOV6jK0BQSAgdLJlcj7jg3X1bHDS5YMXPOOWckjHohhke+qmPy+xqwTUrEBa0uO/XUU8cSKlR5BjtLPChLstlmm4W999

172、47Whlm5z7PpWWV2rTEw3BHs0mIlyFZdWnA05SDovoyCaxqZrKtQCeREPelybV7tRUVSjqdhJB01b2TGk5AOumem2eeeaJCl1u/IRIy8AgymRX6ctWedRZ/lBgRtRBCoaygkOstkS+TUHvAf6rMiQ7RDDDRuVgl+Rn8rNgq10a5FjJxC9gllZmGsCyUJy44atSomK0taM4FQn1DlTScXLWtigml/svF6rp7bBXR9IROIiETaonhJmqEU8a9ZmKox4SIevw2fLDvvvuOZ002REIGFgfUzKLUMLvrrrvie1gPEX

173、HHKFBYj688k1B7wP8wUMpEE5eHH344LpZnIGJBWeeHheTeYUWle0xNLTEMNzDpP5IyuEjM5VcmaHH/VSXidjJaRUIJyTJC9sVAcRkmEz21RtEpJJR+o7HMWMet3J/fXYV2JKHLL7889kcTx97aD3/4wx5d7VdccUVM9H3wwQe7t4xDQyRksPJHkGRytclBKcIN7UaqkuNVIZNQe4DqjUAkqR0HA25klQhMdFjQYlAGKoUUufnUyCP7Jwbg5uPi01QymHHGGePjwgsvHK1xA4a6ZlRtarwZRJ599tlIgL6jb2

174、6/t8Nzd54XVlxmkRgD+/KCXwnHX35X+HdrYvYRrSahBIKFngYQy6azXms1g0sjllQnWUKjR4+O8SATnlZYje1IQrwR/iOeiN6ayWRPxNzT5LZpMaH+IJNQe8DNL15goG53uGfkn5kEEcQceeSR0ZIyK0NA4k7IylIYKkWkunok1dyALCpW/I477hj222+/GLRHwlRQBhwTq5i39h457ofhwRv2CvN/cYxlNrZ9dtqw/rGXd9FTazBQJNQbxOncE7Wa2F7VEuq9oZNIiKxYTIgCGGkPB0tIxYSUoN1KZBLKGA

175、v/g1leszvYYEDsiHvugQceiIIJeR4Sq9U5Y1FRASLcueaaa+zaM5qBgIiCK5kk/etrrxVeGH1J2G7OcfsU2yTTrRKuH92aOFW7kFBvMDgj8r6ik0hImEFcSICdS2k4xIRyAdOMAQfptYTUZqxs2e5wz8llouxDVlx1d999d6wEIoj605/+NOY/rbvBN8PDZx8UVi0Qz/ht/nDaqfeHlVZaOlpeEj8pRc0iDVhnnnlmFOxwX8uf4mbkDvTdvbl1DNCdQELDoYq2ZF7nJX7G+ms2hhIJEb1IhPb/WgKFmKMnZB

176、LKGAvWAh9/KypCdzLeuOX3YeXxiKfYFgpnnv5YF1n8KOZMcfMtscQS0eUnJ8eaT8kVqIlZqT4hLwdhSfreddddY8yLS/DCCy+MEnkxK/9HJqHG0GxLCDEQwpigtSLXbaiQELfl5z73uRgn9N8iIbHantJ0MglljIXO1Qr5aafj41cfCbut+KWxRFJsUy+wURj9xLgyLiwcrhvKP5XkuXAEs6nQ5NGJW1ESEYBYDkLhX7lTaVVNTWa5qtzEFJmEGkOzScj/yZ3LsiW4Gg4xob6QkDiZlB2EQ8hSxE477RTVrb

177、UsokxCGWMxnNxxfcW/Hz0xbLjqPDGGJLeJOm/uhUaG3S67PzRC2TotF497nhpRDpSB7o477oi5UYQRKhXssssu3Z9oXwwHEuI6laiKiFqxgGGnkxDBhnMXb63CQgstFL0AVcgklDEWZt4UY9kdVxvIQ/KtEi4ffdQ6Accmm2wS3XRW8mx3ICGtr2glCS299NJNJSHnKdla35Ds22yoFjIUSIisuwpc1KykKmQSGqYQHDdw8HNTNsliNuAxpQ20GYOLP/3pTzFGRODQFxggKQOrmve4WrUqUQQloTwseR9gQk

178、J+nXI8iCrUASsvdEYd5z4qf59+nSAny7aiq7dREnLu5e8qt8UXX7yShJxT1f7Fe768j+tGESfgzjqVB5l+T7kVf7NjFt8r5sq4DsX3lK+pIqFa56tx/XILKqLrvyq39ddfP6YZJKgNWbWf/07MJr22igEQ59RLQix5527iVAWrPVOhwmmnnRbvIwIe1zGT0BCHG1URUS6eItQKm2222cYmffLZqu0kj8ZgVIR9dZKhIN3uJCgAXGtmWQv777/eIUjU1PLT0kmtQHNSFla5f+Tis9AIrgM8q+4H5dddtm4jWh

179、F/MqEpYhjjz02ii3K31kkE4O3bcUKKo2SEGIuf1e5KaRbRUKOXbW/gTzBdSi+p1Av6APiG8hYBYDiPqkVz13eWfE9axElsByK76kSkgQsRRKy3lNxv2L71re+FYlNjEpuW7lx7RYTsrkRq/bzu8Qx0+u0SrD4Zb0kRGGq7Jal7sv3FcKcffbZ4zmLj8rb0/xW1U8yCQ0hiDGwcIpwc/HHWg+nCCIEN58ZnhiQG5S/m8KrSEJmc1RcCg4WZ3kZrUcjeUImHQpsFpuZu0aJp+PXqufIzeh9wglJu+D+8f9bssP

180、A/te/jVuL4IlxIouf2/RujBY2lZUljVKQga18neVWy1LyDlV7V8crMv7uKZ/+MMfoucgDdD2L+6TWtVvTq24ZpPrUHxPP6yyhGp9j+Y/beXEsC/uOOfBRW1iW4wLOU/3jpw7FuzVV18dJy2sSxMX6rlMQkMAgpoWGVQlYLvtthvPZ+1mN+tyw9YDHafoMtGpzPoMiMXtGa1HM5NVuVYMcGIltfJcuADtkxpysWy354iJq4UVVVY5DZeYkImcgdbA2mwQp3RyTCjBvSHZm0Xk81IWTAiqSoGpMWqsyiTUofDn

181、+cMtUMa05UZbYIEFogy46HvuC9R/Ukmgt6U3wD7cMhIwM1qDZpEQt4rBzSSFa7UW/Kf2q9XEizxSOblPTG4AAQ11dZzJnCK58l8kHjcbRXVc2XU+WGiEhMB1Mg75LO9KedVhuXBciVy0rmsmoQ6FTH8uMvEcq9qSV/fXUiFBNdBwy/QGNxLiEyNQX6roZsloDvpLQlwkiYAEhnsqKCxmhFzsK1Atx8lgmywoVlFaTsN74ibcYtCOJCSO5bxVvWgGbr/99hgXU1FD3yu63ZoBY5/z1VxPdREHG42SUE9wzyTr

182、WnzSJLppJFT2TfZWkqSITEI9A7lUWTdIIy2h0Qyk76mHUPzfyMqS124oyZfkq630UQ839JeEDCL+G2s3FVVSVfD/qZdnfxMMMLGZeOKJ4zYuFgOwmIg4URFFd5zAc1pJ2b0gWVflh9QUQ01oFQnJt0rLl9dyBZWhHxEcJIiTpnOm5kLmZvcSMl2XRBKsx+Lv06gLixNCcR0u7fQ+EktgAdlGBCJGotoAAQmVGmGD92pNHsSqelsqJ8Wz0nenlmJbCYQFtvv/UuyqFSTkeokRmSSodk+J1xQSUuI8raYK/MfU

183、Hi5kPWSUSahnMFu5UsxAWwmkIlm1HndcAreg/6zn/1sXMJ3MJeBGGpolIT0OfEbg7D8jLI7pBbM9n2GC4t1q4qD/5QVZTt1k0dqyyIQkJgkIBYliAAJOQ/HS40lldBsEiJBdi4UbI49+eSTxxpmEn5t76kitPfUDkxAAOmceRq8JspQdZ1oI1mBLMTi79MoGosTOfuK1ab3JSIjJp91LW0j7GBp+h4wGdxhhx3GHi9d3yIIiyxjkiYBqSGdBARGCp2+O7Vy3Mk1t33LLbccK25qBQlVod8kRDvvxnRB3XQIS

184、CFHA9kKK6wQteplxVYZmYR6BteH6+MmbSX64o4rQ6VqqhedK6M5aJSE9Dd90myzL8U2EwkVGwvAJMNzazt5LMvGDXyD6Y6zjIcYg3NwLilOSd4MyMN2+XDcP+XvrAcmV8Y6VlBv41lvMN6RmZPTk0T3Bn2LW1TOVtHTwGKxGGQin9SKJNQfdAQJuSDknm5M1lAMMnU9TzMhMwave5tZ+1PoxYum+nCFwpVVA8dAKNP64o7LaD0aJSHWrJwvC/rVgnsMSaU6XyaAhC389aTc3EL67o9/OM4wfRcLo1HE80iDH

185、yDQULuV+sYqWTA3VUPDNCsDy62voC7DAmQtvveRvsjK5WEuREi5ApkWRbVr61E25MQFnbjKcyo4CLiSSTkpgXJdl4nH3EtIKENN9wwBkLNxt2ERcYfDvB7+ZL5sOt1YzYbyR1HqttfCNzq6AaugSDQoYhGSYjKSpJpUq9VQYxI3zToi1GwYL3mjtEfDbZesxwM9J6nVnS9w2CQkP7C/XbAAQfE8+0LuMcQkWKk9eLVV1+NalTXgsKwkXvaNUciyeXWCFTRQIYD4TVqaxLyhxx22GHRTAQ3Zirl4XkjJGQGJp

186、GJmoWpOpxm44KiOqRrZfDoj8y6P/B/IkBS7f5CRxeP4E9vtpJouKBREhJLcC+Z0BhEqlpSvUku5OYlpZ1gggniIxjk9UmWkoHevpJWDfxlDDQJIUzjTVWcpF4YXxCCYHxvcC2MeSZnfmsxrtUXILByPC0BIZJmn3322b0q40wUypWqW4G2JiF/goCYhCQ3phuUKc/36nnKzrcuite1SngnJHccV9Rwg2tFecR9wv8+mNJMHbOZ7jiB03aQmnYqGiUhECcRAzGQVDUkZCKZYhIGdDGPKiRSqzX7HmgS4oWh+O

187、svjGPyieoBchbDQUaAmPoCij2CiVqhCbJ411hLE4FaECNGZo2SYb1gcVnEr9Vo2BJyE8grQEYuHB+yoJ2FvFIBPLWSlPooywHLQEJuvuEoTODGROZFZc5gQeBZEiKZZsbgoz8k1Exwk5tQ1nIR83yY5UvkZEkna8lATRVmW2rFckGNkpBabuTiPbnEEJXKBizyWpY4+bJB9sQTT4wEXDzP1NJYpn8KPZx+ulRzpwgPsPar/psaqTf4uNk8LWgoklKVqWGda17mgxSKhbd5kRB5e9NY4qJRvm91FLiLVd8+T1

188、5PANRvaFfwgQgAXThBAcB4cg3oFZR0I6LrTcMJxJq5/iIm5aasVnqmjLUpONGGQxXYyeiXUioN7CENFaviUxxhs4CsC21IpE1SkLSFcicq4B4Hn/88WgpGKjJy7kcCQuqYkcXXXRRnHiZWBfPM7Xi2lqeI8DipFp/dl9XfTY1ZIdYevovixUTCEq43JS1KedkJWy/faxnyai8vny9ybPEoIrv5eac4Oq3+8chAZajX6TEP8sf2b5z3Ly9eabDAcSMisU65KzUNUZ2gE6VCvVcUnqqwMNlMKnk9FJJNRMd1xP

189、ZXEQAPVeLdHFMcccE6tRczUaYLm23HPc3VWfESpwP/bk2tJ3WVSKjDp+X13MvldFip5ceEUSEstDxHLvVlxxxcrSWMhcVfP+ysV7gtyltnXHNRvDxRIizaQ2GgzlWz1gCVEptsodR4KfkiglEaZZWEY1hiMJWfKcF8VkrdjSYKj/pIoOVeAKdH9pQLrtOWKqRVzOP3lyaoFbimsuEUJfPBo+43f1hCIJEXQBT5LX3JxlcDGqrNBKEhI7bFthQrMxXEiIhdEqK6MZQEIk2q2MCem8KQjrP88VFmpjOJIQ7wnr

190、Rd5hsYkBgdL/XFu1wErhYqMyQ1ipkKnqD7VIyLn7DT2BW5EijdfHPdsXYQIS4hrsCUUSSr8vkVDKuyxCP1pppZV6LcfUH2QS6mCYnVAUCRZ2ElrtjiuC31sHExTOqEYnkRAZd19RRUK9gWzcdakF9y7LQSKuGmXJMuqJhNyLKa2kJ1gkjtiK6rMvkBhsfOtpCYgqErLgpNdVlhCxg/htK9MfWIfZHddhMIBT2ShE6KYnue7LjGmw0Wp3XBnKqvRU2Xm4o5NIiMRbHIOrrNxqxYYbISEqPANjLVcuq8HAPckk

191、k8TAvLhGIqEqEpCoS8rOTWzySFVX9RvSPgjIeKVfC95X7VtuzuPyyy/vsaI3opKn5Vx9BvwGBWSrkls322yz6GrUV8vfpyXhhlhW1fvOPYGbvGofY3JP9faahUxCTYIAJ1eWm8iCWuTqnYaBJqGMntEpJMSKYHFwmxloy63KnQSNkBAIyKvYXoUbb7wxponoh/JcWESea4ikPCnk5iN0cK253JBS1W9gFSASLS0QacJZtW+5cZmZcOlbtZCKkYob+y7nSpjgO6qgej11nNyjqu8kqQffLf5afr94XFZY+X1N

192、DVCy9FYjk1CTQOZp5sJcb2WwsJUYSHdcGQYH6qPeStMPJwwHd1wKwvcFgvw9KejkxXDzms3ri2I5mvWAyiSkYsLGG2/c/apnkH4na6ivUOrHZ2ulP5BiK1kGlr+g7kN4VeCuk2zc6nEGEZZLNLUCmYSaBNLRtLaPwVRQr94ltdsFAqiUSYOxvLA8BTMvszb3Q8bQFyZwKbGeuKJ6a0W3rWrfYkP9hWO634sJtLWgriPBBG+B9IJG3OxixJaC6A9MFC250Je6d40iCxPaGDpFT7kCbhQzPNJSPtlOARJSvUFW

193、+ECD9eV702wwY+iTEBeePBjutd5acfCWm6j6QDGu0Qj0UQmZ9UCyq9xHhNVon5aa4TrJNWoEiI9IQamvgcizyyTUphC4NIOj0e+t1p0K0sQJnVLA003OHZctkfbAUHfHJbjv6mlFmARarI1V1AjETChY9ed6IdhPgNFbGbLesO+0YLsK/goqtSyrUK2R3XpjBj55O1TEE9gzW/tBlFJxRnNcsbLHdcFcw4a5UtGQ7oFBJKwgQlmQT5a7XeyvH0FYQEXFN9PS4LSOJpcZltAfjiysX6bfHcWWL6BSFF+pyq18

194、V9UhOv6S2uikwE/+sRMBFP+J1lQqD2s7ZT1TloYlhUhOr3FbenAtPAouKxKb6f2le+8pUsTBgq6BTXHHccK28w3HFVUOaI0lCMbTiikywhFoKCmiZotVorqj6zTsSHFNyURFo1aeGJsB1prbHGGnGhvnJqACIrFiZFSMVzNznT0udYZvKGivukRl3KJd8buPjUonNOSMaxnadGseb7vCe5275lcO8hqKpz0AgXeDZ8trid8CHBtTE+Fd9PjQIvS7TbAFxqZjb80P2B47CI2tk1l9Rx7eKO03lUZ1eAMok+hh

195、OGizuuv0A+qkBbVkZlAq4uy8qkZgkG2zfZZJPoSmt0BWfrbLH6GlHH1QLxkgKojr3aaqvF89QQgHXYvDdY5a1ysmobgMxTfgHVlplJf8HEN7tvV9UcdxypuWWE2wXyKyabbLKY+1FvQdyhgqEuTGg2uJZYB4LphAvGFI21YLsJVqPggmNBkHqTW5djVEMRWZgwiGD1CB4iIOXUzXyaddMl11w7Fu9M7rhaCXKDBSu+fvGLX4yL/w0niyiTUPtAjpFYSnL39Wc8YKnJGZJMa8kJOU/GHCImrjfbWSG1RBOsPp

196、/TuM6tjFueoJm8pX0ajfFmEhokOAf+WQREfZNWUmwm+Iz5gtuNiHSsdlXH6WQIslam/FDEUCIhky/WSWppnRqDbXE7F1QVWOlpH/2TlL9ciUEOT9pHnKinWm19he/nUvef9De2pf+rdDD77LPHmAsviz6H6FZYYYWw+uqrR29EleUmX4mqz+c010CZsKLYwDkSUqR9eF8aWRcoL+UwSFAYkPwaSbSycoAbpd2Kdwpk8pvXKrMy2GhHcmwlOomENG4qMYxiS14EQX8TiXnnnTe6pQ3qYB95M1ZqVvqqSlgg5q

197、Oqgfc1x1lsscVijlGCbdYFSvuoNkAVVhYglGEimM61aHkYB9J2jZfAb6FqI3CA559/frx9Uit7TqjUbC8KH8SmCA/KcB17IgzLtlPEJRij5PYRhoBFRH/wgx+MV03B72JlUbrVckki7PLvUNGiEfLqKxomIX+SwYqPtAi1ivxRGLhetBMJwUDJqetR0Awk+L0l73VK9W8dqlNysBpBp5BQWt7bAErNVWzup+LkgXigTDTcSeou1gICsNBbEaTNqmQDFy0CKi8Lwm1lQEYCtWCwTeeayAVYImn7mmuuGVeLZo

198、kn8kQyBui0T7GVfzM1nu1F1xYhQhUJJbl7LSha6rdSryVYtoJ0XKxZYm9VImsaY4tLghfB5V3+HSysgUjXaIiEMDprIRUGpD4B7Gs5XcoOpmY9enkYTBJyfgORfdwJSO64ThjYDWTcLnzorbRYBxOdZAnVExNyf1lhtDzJI4fW/2uBSzzFSlJM0CQ45bAgtlq5QiyHUaNGdb9qHEhDXcgbbrghnk/R0mkEiHeeeeaJv6nYRo4cOdb6oOJL24uWjXiPdZXEe4pGALdeT+sWWfoB2ST4LT0RdFu749x0yXSee+

199、65w1xzzRW3C+J/+ctfjoOC3A4EVY85h4TWXXfdQcmj8VvkGHRCMmmr4Ubn9tBx2x1cDJtvvnkcGPo7ILQrhhoJwTLLLBP7OhdSagqSmlAk+M22m+EnGCPEPcQ6uIyL/dXxas3w3ctcUQnIpNE8OJaSYH0z4pJyjBZYYIH4m4oNiahRZzLIgkrbxZCUCytCDIlrLhEREmIc1IJrnMpiISDrFXHf1UJbCxOSG8msZMYZZxzrevuf/mfuNofsGqQkAWjeoMbzE3nRpJv4IcPlKvKd8lcLs40yvBb+K2LPl3VcHu

200、TMgvGphveao+93fyqMBQ7HihL4rt7Gmhdt2bMWDrNHTfUMRQtIeOD4psGv9QQRSIhXhWxUtsNwpSaPpeWxCcK4HriZkueE/k1KmdXQb9IlpDEVm41gf2+gvVhnBPL4Tnp78SnljvOtUQ6JvLF2ngsJK5A7rgiMTgXyz+4pibx3GhVggzXjyWEQFlhXHpcoGnJhyq0vTqOCY10EI0/2kUTdKTuAP5Z79VT6wgJmYG7kZT+cEEHMl7SmzvHzeu3zDfffPGPAZ1p8sknj8/5w/2pZfBZ+xwC8txyvUCO6TeXkdb

201、DL0qk06JchBIJKamUWwB5+pxcGp3L62LTUevtMPbr5DiLc+fjHyoYqu648iBpMpvcccVSOpRzJrEG0PKALSaUKmmTO59yyinxeRHuY8owYwr4DvXQuLH6CgvLHXfccXGpkWZ4TZBBvcIEMTHjo/5sIusaFr1Grr3QB4iDcdUVrSaxIpaUCa7PIXmxHmMLi6gW2p6E/BH8iS6OQZJ/dtlll22YhJjUA+ESa6TygWS3GWaYIf4eC0+ZxQiUylsxk5DD8qlPfap77zGgyuF6YF57brYm0AesDWqgtCaKTuk4rB7

202、fIaYmMQ7RqxdlWwqIAstnqqmmip3KDNJNxyK1n+Cpulia59bZr9fN6SbXMbi4OhGuGaI3g/ZbOh2dREL1VkwgPy6nJrAuJEkXweugfpn/1P0766yzRmskgWssjTWAbMqeBrl+aUDnuUBG+rJ9GwECIhzobwFTogJ9dpZZZokTWMVYESaLUJkqLrU0+PtOqSJpnS3eF9YccvZZjUvORDQBQZsUp/f1h+S1MY4Yr4jKKAyNE7XykTqmgKkbxODnohhYk2wSodjuh/QGJDQQwgSzLP7kvrL7pJNOGv9oN7JlglV

203、QILyYYoopYuKpWUhZbs2F5vdTCwLLaeGFF47E7Sb69Kc/HQcZMNPhXnBT+ozGPcksF6/yWmCWxWkby4xVlmaCzPaZZpopngPioq4h2TTL6YtF6fqQZTZS4bcdYODimnC9Fl100R5dDZ2ATiGhpOhy37h/io2VAvJbvDZJKFbl8DnCgumnnz6+b2LGojWIpjgPKbTYMwsmHZcLvbjom88gnfS+XCIxkwSTRoO5AV7fSe47fSl9phik5/JL2zWEKPZCXp7GKaRX3Cc1v7noXeFitD0JKfx2xG2yZ3z0vSbHxlD

204、XQ7Vszbm5DixFlp7rwIJCgtyVPqtVLX/i2qX30zgDrEpjk3Oaf/7543UyKZCfVf4dbb2yKvYUIDTbdIHMSFxIgzTrgKmH6Q26LmRvGAgSMkAl91i97M7fyiVg7fdkwnPBuSEN8DqUmZXZFhJJFsdDDz0U5pxzzmgduXGAzHPaaaeN1pDjVS2hTV650EILxRuPRWJG43x1cufhuUEWmNtmMm4W13yiiSaKz5OLlEBE8l5f0OnuuAQDBaK3PLLrVXTxdBI6yRIy6VGnzeBdbGmGbibvNTLy/4hLALWW1U1ZOd7

205、nTjW58jmDPte8gdNEjRAqHbdYhDPBvZveL/cvA7fvNXYZB5K7yr2RPlMcfwz2abtmUsjrQ5UH+oqxr7hPas69OPm77rrr4vb0m+uFcZXVYllwIoKiN6QZMIZz3wFRQ/l38E71JdWmUTREQgJaWBJxcPkUXR8G5eWWWy5aROkP6w2tJiHuMOdj8K/yHdeC2QbrbuKJJ443IdeXAd5MCikhGW4CrjZmtFkD1QuiQTgGQQl8kNyWzoFgoQznxcrS2RAX+aZr7DNukGRxFn24vgv5LbHEEnEW5X3Wkk7dSNl8ndj

206、/SRLa6eDi0HkpNtNEoNMwFN1xvcFx3Ps8AJYSKObDNAOsYy6qRoBk/dZmFjCtBZaUseCZZ56JrkdjQLPj5MIAPaWnmPg2Q/DUG/rljnNR6g1694RWkpAZ2FJLLRUJoa+JV+m3cXURXcjAnnLKKWOsRzDQMZEU05lpbn+mrtcUZkiBqcsaJMfkcqhaY96szDnaH9JnWTJUMXy6ZKZcTCmhjjvB7IhVZ/bIXUEFxCoz+2cd1SqBUgtcAmaKCG0owP1ZFRtqpcXdTHQSCdUr0e4NxoJkkfcmGBpIUOX5PyhYTSy

207、bTQjtiLYXJjQTrSQhvlGWS2/y6FrQIbjgWBxAoMANxkWGhBCD52ULS5ARkXCpmdl5jryqwFKjiDNrdx1YNikBmDnss1oSeSAtPm6zFOfHCmOVUc3Yj3DC55xbssTqhc7fiHijU8BVKqG6LxbxYGE4klC7waTO+CSOww2frOo0QR3KyCTUJJix9Oe4ZmMECFtvvXV8TYXG6vCauEDsh2uunFuTVG2IhWVBFeRz4Jy40pjaRfB9+4xBMsG1QTIpCVjjbnNzcM3xc3tuzR3xIK5BhMTisp08vN4YDwIi3CDdHKp

208、gSda7ouVgoxNJiOVfdPFQXnEll5t7LUF/qNqnqhXvZX2jap/U9Kciap1LakXLyzlxSxNb2C4excWtT4kv1/pu28Fnqt4vtp5cYUjOtaz6XLkVr2UZvV3bpFQs/h6fgUxCbQI3U5GELLLGLQfEAIJ7/MzlAB7lC0JJAVDBUIQFfq/3zKyKEE8TY2IxJeWbmTtZuBgT5RvIGTI4+W7Ncxaa/bjkWG1puxuplgSzDBaQ32ZQGW5ASmIF/P7tgk4ioVRAk9KNkhMMZqpapIXaiq2YBmAyVrVPVXNNEhQtrdontWL

209、unj4n3lm1X2ppBV/9Rb+RF5QgfsKr4rfKuzHJqzpGisWaZFa9X2zJ21EF6mJjYtXnyq2n5HKESfBU9TlNOoj/yW/zmjclxfIzCTUIf76bp6fZQV9QJiHxoVTMECEJnto24YQTjhdz0imLJMRCQRQk21xk3jMjBwodpTq49wyGlIZmlqSsYklk4CwwbkF5P1VAXOUij43Adet0dVwjSNJuZM96NUj6n4qz44FGJ1pC6p2l2TUYTA3g5VacGLnGVftUtWK/dp9W7ZNaOe8QeVTtlxrrg3Uij6hIQMCdLz3CoA7

210、Oo+oYqe8Y06reL7bidSrDubiWVZ8rt7LFVwSC6ek4aZXZdC29zpZQP0FdQ53WrMx5HcTglLKbPWfVkHAiGLJJKhbqlaIKi7RUbCeVkvfeWmutFX8n6SOXW5rBkFZTFJJFAomnhFb7pSQ1UkpqObEj16sMVhZ3XH+gYw11d1wtcEOwNA36Sd5NHkuGO1jIMaGBBwFQeWUAIPJRcYDEvFyte6gik1CDYFWoPNAsmBVwf5177rnxtZtUCY9GYYZTDmpWvS5v6w0yoPtb6SC54wgthjOQsUkEiWpZ2CGvBTnU6+L

211、sDzqFhMQ8kzuuk2ECS/1WCyaUrKH+LmrXKZCE3/YS7WahmSSU0T8YgIeyOq4/MDFQIJIVy3WRYDtXT9FV1Ax0CgmJbahbyCvQac0kg5dCfFalA6/L+6SKBdx08v2U/5FcW95vqDXxvIFY4LLjSYhLTPA+ozkgiCgLJjLGQRBdALtoqbp/JUPPPPPMsQyK8kncp0rQ9KSA6g2dQkIUmMrhECV0UuMeV5VA/p48PQpWk4zyfoL1/t+UhM8dL4hf3m+oNb+zWK+vVehoEhLkJ18mDjATzeg/1MjjC86oH+KG3DQ

212、qiZDSq3whdqjIbFmGr5KDPC73fG8QI+wEEupUmEhwtVfFgDIGDh1LQnT76rHp7BLK+jPjzBiH7I7rHwhULPiIQOSYEDwUIYDPYrIMRxEC3+5jM08KT8SmvFMmodZBzCMVUs0YPHQkCfHHpzpuAxE4G07gjkt5UBnNB4JCTmVZLUXi5z/+ZgOQJmHiBTpzCTUfJhksYCKVbYzBg8dR0LcbtweCGgggmbDDfJlisshZwwMxJksTaAILnWifBSvMwk1F3Jz5N2lhe4yBh8dR0JuIhnZarNlNB/ccc1WeWU0hhwT

213、ai7c1xRwEsMz2gcdLUzIaD5UglBJO2Pw0SnquE4AEQILfyAWacvoGzIJZYwHdefSapgZg4tMQs2B+BsC6oTK6cMRmYQyxgNVlpYx+Mgk1ByoaF9efj+jfTBsSEgxw+Ia8p0Kqzr2VLCwE6BKbyrs2qlQ8FEyajFptdnIJNQc5PSN9sawISGlytPyCK2C0vL33HNP96vWQFFTK7W2CvKvrFfUSiiKuO+3a/ag0UgU0Vj1sBidKy61PF4VYgk1DGcEDLSEgnRS71YCBISH6GytStBL9zq2XjG2644djK2q2ARd

214、8sO9FKyJNpddXl9ddfPxYbbRUsG25CkEkoI6N/aDoJiSdY80Y5HXWWioUeayGRkFl4q2CxMksmtBKq8LY6/8AaQ610KyI439FKqAyg8nIrscUWW7R0gTrV2t2z2R03sFD2iEs6Nf9DqyAnUX9I31UsDWZcK1dYL4IcnNu5Hte5yXda8kUKis8NpzW9mkpCLiACso6O9XaU1Vl11VXHW2enCkjICn89LfLUX8hAbzUJGVhbHQBlCfV08/cXap35jlbCKrStXi4CCfnPWwUxRpZQK8Et+uMf/7j71fCBAZz7XA

215、kjy9drVjK1tIY1tRQaTc36Wgms07R/uak+wTLmESkCiXHdprFHgrD9r7766rDSSivFIp7pu2666aa4D/iMdctMqKpw3XXXhckmmyycddZZ3VvGQHVqxW0vvfTS+GgROWECqyKDpSR8zhplwwVNJSFko5IBNQrccMMN8bUbqieYTapoy4WiVHormkq48803X+V7zWqLLbZYXOG06r1mtbnnnjteq6r3mtEc23dUvdesxkp2rarea1bzX/vPq95rRlM2ykKCVe81q/EkDIV1evoKkyzjhmKwLEFt0003jdvKy+

216、gXQSjC5V5sJp6K8k499dSVVVZYOO5Fi1YiIstSqKiw0EILxf3Ltf+K2GabbeI+v/jFL7q3jAMS815xtWWQg2e7Jbc9uketnjzBBBNEF7Xq1barZD9cFH1NJSFmpAuYZrkKMHqtOGNv4Iormr7NbmYgFFlV7zWr6TwWvKp6r1lNsJ07ruq9ZjTH9h1V7zWruUauVdV7zWpp1duq95rR3Kutvk5cT52uhGwEisB+6lOfikSw0047hZ/85CdxiQxjycILLxyfa/Wu+skKmmaaaWrGa+UPOTarx/epIs+bYxuvAO

217、JAZr6z6IWwzT5V1VuswOq9oqUG6jLaPnr06DDhhBNGa9qy/EjosMMOG1uUedSoUcOmuGrbkFBGRkYGICEDtAGZS45Hhat7kkkmiQvLcYvZZiDvCeLTXGvTTTddj4IhFtADDzwQ1a3II1k4iMF5WDafa9T3Fi0jkxxxRyIs56qmpUfCHtaVY3Afeo3cgFVmO+LxOP/888eq6jPNNFMkKJaR38kiGi5oKglZe92FTTMDN5DXZT9sRkZGRi0gIeMGi8Sgf+994ZJJ500DuhIQopCb3FmuO+8LEE09csyCvato33

218、nhjuP3222MMxgqq559/fozP+P5Pf/rT0dXm+dZbbx1Jr2pZd2SHjFg9iIkFqzyQz1lnyraULmAFWttPP/30WC3dc82YqaYd62fZZZeN24ZL8n5TSYhLbY455oiBNn8w/6o/NK98mpGRUS8SCe23337RgvCcYlOshpViuYtZZpmle+/aMPj7bFGxSuEm+G+sQnAELIssskjcj8VCIOW5Jdx9BxJTWZ4FY1/CHQSINMRszjnnnJgMe/fdd0f3YSI8Cxc6ztlnnx1fJyR3nHxCx/Zc22qrrWK5LG2eeeaJ77VSL

219、dxOaCoJgRkFE5NZioCyFZSRkdEXFEloxx13jPEh2w466KAoPhDUn3baabv3HgP7it0UG6GT4yCUtM1y3rYREAkfQLJaxCop8zxnlRCHeG6tJ9/NwgFxIdsIU7yfrDLqPa8tlpdiQgivCL/HdonOfpfnGnLicvQ75pprrugKHC6rRTedhMANc95550U/a8vw3lPh7MM2CuuttWbY+DsnhCcLIpYP3noiHDhqy7DBRpuH6x8Zt4LlB28+Hg74yeZd27cMNzzae/7SGPwn3Pz7HcIG664dVv/GPuHPTxaWOXj/i

220、XD8rktHtdfSyywXfnDIieHNrs0ff/xa+P0vdw0bbPDNcMYfHxmzbx34+LX7w9HfWCUst+JXwzEX3ty1ofuN8FG45bxfhfU3XD/84vTrwrgU4A/DH885Im4/MzrC9t7wn/DA8fsHb7Wdb7r77h7ePqtcfkI/3nwhPDtNbt/zwqrhDNuGXPu7z17W9jhu+uHjbfdLdz3cv35C+89f1HY5TvLhOVX3SAcdOu4Za4/fOeZcNjuW4cN1t8sXPXgS91bu7a/XQ4eNetuq7bd8I1D/Xgivjw9XDtKRuGZZZfMax68O/

221、C8x+My9W57fdj1HfaNzbbLjzc/Tffc+WJYb0NNgj7Hndh+KRDpRpkuCZTBieWvUGBW8X9rZHX9lYSRryA8koMozdIfOUeMiM3iAHZcfo+zezYeQzl5Tb8TgOzAZkVQrJ85ZVXxm3ECIL5008/fffeY0BaTQ5dbGLTPrPJJpuM3WZ5DNdWDpb/D8is7XfrrbfGWAxRgnPgwWHRWADP+UK3IlQEplZYoaL7bLLLovxJe+VSUiBYNsRlUfCB2MlkvNaLImrTjzdvdPKtJV2QUtIaEDw0XvhlecfC6essniYfsRm

222、4bbENQayLbYJ3/vF9eGuq44O2399k3Dd3z/sGnv/Hn7+3e+HrY+4Idx15VFh+9U2Ddc/Vc+A+mF486WnwvV7bBJmHLFoOPWu7pvi44/CO3+7Kvzs6yuHlUcuExZdcpXw08seDB9+9E44/2c/CWv84Kxw311/CHt0zdp+d1MdCXXvvRquO2PH8LVFFg4zf7ZrhjTR1OHwv/wjvnX/6YeGFdc9PNz64B3h6A1XCgf8dnTkp3t/f0hYcb1fhtsfGh2O2mClcOBJd3SdbQ/4+IPw78cuDjttPDIsPOdM4dNdN/2K

223、PzwkPC/p/8N3wkMn7RvWX3XlsPxSi4WFNtwp3PDPd8OHr4wO26+9Tdj/vNvDn078Sdh6w13D/a/3nqD5zn8eDccfuHJYdol5w7Rd3/OFkRuF0cbr958Lv9z6+E7B10d7rn+LDj1zcKVz7eRZ8fPh8O3+r7YYtDrwn3XPu/4Qe2P1qxzPjH74T7bzowbLTOYmHeqafo6rgThp0vu2/MWyYmW68XVl5p+bDUol8Jqx94dniz69D/uPTY8NXV9wvX33dPOGmLVcMev7gm1LOAuUHKbJebha/e7JtCyqyVW8hAaI

224、AqApGIMZDoGujEReWbGGDkuqTtWnmSJlVhlVVWiftKhBVPMCs2o0+Nd8F5HH744d2fGnpIJMSdLxbjOY+KR3EXltBEE03UvXdtUDD6TG8qukRCxAseqfESnAuXm+1ltVo6t0RCKYGVG9C+3iuv3rr99tvH7QjvM5/5TEwlIGhIVhcvkuVU/NdyLKvk30MNnUtC3bh587XCfJNuFUZ3z3jfH31mWHnGZcJhcRI/Omyz8Fzhx8c9Fz587IKw8kzLhSNisYHbwlZd23/0qye8qAvPHb9bWGjEyHDGvd3z6I/fCN

225、ecsEnYeo/DwpFXjRkEI7oG7W1nXyh89yJSzjfCkRvNE1bf4pqeyQH+849w51NjsqZfuHDXMPMUXSb7WQ92vXo7nLD84mGpvS6N791wyAphkSWPDq93bf/t8kuEZfa9Mm6/7sCRYdGlfhXGHKEGPn4vPPuPv4XHqH7/+2TYc5ERYZJVtg73M6FeujYcvPu3wx4H/zpc8tS4WfYLp+0T5p9z/XCFUfvl34evzbJYOOry3t0Er7/yTLjryTHy4uu+N0uYZPZFwrmMm0cuDqvNuETYP37pA2HHJecK2x/5VPjo75

226、eF1WdcMhz0EEa8O+yw+Jzh+wf9zcfHx0evhbsf+XuIR77v5LD8dF2zx6PGWBnP3bBX2KbLujvspEvCuFS/d8K5ay8fFtzmd132ZNdHTlo7LDjvnuGROg0JM+eTTz45xhUMEma/XDF8/17L5yiCZWSAFEQXWLcPq2zvvfeOz+WE2M73b8acwAISgDeIqatHBTbVVFNFa6wIy9k7jveHKsRq/EZWkLiLfJ9k1Xju+hSJohYIDXyG9LknsDzsJ0eONDpVwTChQAjeM+FgFRWRLKFydYMkJ/eZYoIrJBKSzOqRRQ

227、TpHIgSknuPPJ8FPtTR8SR0/bfXCPNO1kVCYyzr8NTlh4XJZ10uHPlg143x0V1hh6UnCt8+8MLwWNese/LZVwi/lsXHXx4R9huyYnCRvuc3zs5dOOpY3cOCxZJ6I2Hwz5LTR9vnBETfj4sv/EO4eGuc/joiUvCLLPPH75zoWHw9fDrTT8Xltpgj/BK78bDWHz46H5h5MILhbPu6hopP3gsrL3kfGG+n40ZsG44dPEw3+JrhEeffyJssOz8YYH9ukno4EXDfIuuGu6t2438Yjhmu2nDqjteEK/BK9f/b1iui/j

228、i75l23rDn0V3bu0btm4/eJkw8/8bhWn7G588Kq88xadj193fFI/SOj8Nrj98cVlln7rDikecGXfWF644KU8yyVDj4LtfxofCT5bv+h73PDk/e8rsw5WxLh1/cy1y6P/xouYnCOrueFj9ThQ/ffS2cecR3w7SrrRtufoEv9r1w+ajVw+ecf5d1NP2CK4bzb3upa0B5KWzzta+EGXb4fTzW3SetHuade8Fww7M9/yH8/7LkEQXCmXfeeePMlUvGNu4SrhdqpyKQkP24XQwiFFaqHthO7suKsr24XIZBTOC76O5

229、BVuIWZRgYBea5qoYq/LYZZ5wxutgAEbmO3F0sQxZIOeBfBTlv7ueeEn65O1kc9ksy6jKQ2J133tn9agwsx05A4HOI5aKLLup+Zwx8pkpCnoQWLCGPxx57bLjqqqtifMjvW2655aI7NiX8DwcMORK688yfhBGzLBOOjiR0b9hx2RHhG7seHW46d/8wYvblw/9GEuqaaS81Iqy401F1xwfKJPTxW6+FF/75cnj55WfCeT/6Vph+8hFhtZ0uCs8/cE6YcLa5uiwhQcw3w7GbTRDmXn3jUJfnrxs3/ezHYfmtTwg

230、vGCdf+XP48ldmCXPsM2ZGfNNhXwmzfeXL4eY7/hwWX3z2MM/+V8ftNxyyYJh1/i+FG3pXrkZ89Nwfw/qLfCv85m9jfs87L78cXvjXy+HF+68Luy0xY5ho0i+FU69/Olzwy2+FEQtsEm6IJHRuFwmNCN895qr4mV7x3xfCcT/fPHyhq7PNusp3wsMvfhAev2yvMOKLS4RD72bLPBJ2XnFEWPlHh4VbLjw0jJhtqfDL+5goyKlrVrjdQTHGVoUn/nJGGPmlrknABJOFfc+6r4tgPg7/fuGl8FLX77jrd4eGZWY

231、cEaZZ9IfhyecfDauv+KUw5Y6nR7K95+TVwmyzTxbOfajnWI6YyzHHHDM2uJ2auIL4TsqIN+stAtlwl3Hjpc+yilhMniv1YnuaAQNrx+CU4ksGMIMut04ZZulKzQzVWIGZv+s0cuTI+Nq18Fq+D3CxsTBs68lVxU1qQO9pP+4zRL/UUktFi1e+DsEA91hq4nlIhjLOa3EaCjluNCXKfI6VO/nkk9f8jIYIWbvI1TkRS3hEZD7rXgM15BZddNH4Hrcjkhrq6HgSuqFEQv+85qgwwyzLhSMe+qCrx94Ztl9qirD

232、lodeF5/50SphxtuXD0Y90Te8/Gh22XWKK8O0DrhwX+8Fn7CESrjr5LXDlutsFZ5+6s6w5FwLdJPQa+HoTacJIzc6JNRroLz58Oiw33fOCDc/3j1Tfv/x8N2lFggL7tNtCR22VJh/8c3CM68+F7ZebqGw8P7dltAhS4QFFtsoPFxXgv1/wvUHnBR+/pta7sh/hKPW+1I44uRrw19P2St8fv5vhWsYGy+cGb7xpWnC3mc9PGa3uvB+uO/Q7cI8I74Qdjji0fDaA6eFmbssoYPucaIPhp1GThE22+y8MLoM8PMs

233、y4dDrsfCd0XfrjsFGHDPS+KLrRaePf+W8JP5pg5TDX5ruHhknvt3SdPCNssOU+49cnnws/WWjLMmiyhk9cI8829Qvhzj37LcZA3YnASg+ESMks3Y6WEMkCW3S2IhIWU3EXyWwS6fc7Awt1ThkRIFlICd599U+B8OAF5GJiJQVgXs8466yesDMF8JEApVwvydgzu3Gm1pM4IT/zu1VfHBJRV2fA5ooJazeTEBIBlVHSVyUmq2j811emJFExQPLJ0v/jFL0aXa7n+nPwgJKV8FtId6uh4EvrzFmuH+T63fXi4e

234、8z+8L4Lw5pfXDYcFGO+o8NWC8wb9jzt5RD+fllYY+aR4bB4394Wvte1fY8T619v5sUT9wgLjVgpXNg9bn/8wbvhxVffDO93f+9/KXcNGOl4W33n8y7D7fomHTc6jB3gq/XHuesP6Of66P7P77z3DVEUeFq258Mrz9n9fCM3/reuyirzO/MTIsPmrMGj/X7btcWHqlk7uO/F44c7WRYcndxpDTNXsvG5ZZ+cRQT2bBszefE0494qLwr9feDC8/8nh49rXXw9vvvRVeeX3cSP7gHqeGW659OrxyzdFh0TnWC5d

235、764VTwtdmWTb89sbe7cf3334pvPVOsjZeC4essVH4wdGPho9fvCFsMPNS4Wd3unAPhB0WnSeMOuGfXVPAa8P6My8dDrjXlbonbLfw3GGno5+Onx4PH74d3nzjlbFu1Ff+cFAYudih4eH/fBRee/ON8PpY0+mlcMW3Tgn/eO/tcO13VwsLfPfkuPWeY9cIiy58UHhKSKoHGGAEnJVyUfLFYEaMIAdOXGLzzTePVpDtZs+pmnMiIS44gxvXneA0whKsNniZ7aYlIHxObEGZngQxDyTUygrR7QrKv1SqyGNV7TZ

236、EUI860H+RrnM7QKHmZO1ywXqeXpfh/iuS3FBG55LQB6+FB/50RthuvpnCBCOWDAede2N49LWuue6Hr4TTD9wnbPTDX4dTfrFT2HnLPcN9zJCP/x1O3f9nYeMfHRNOOezHYefv/TTc/1o91PB+eObey8NB31yy63tmDNsd/n9h9PNvhw9fvCUsOenMYZGv/rxrtnxBOPeG68IDkdM+CDed+quwzncOCaedcnDYZcMtwrWP9O46+eitR8IZBywYJuwafEZQx434VFjk8KujJfCPm88N66+/Vzj+zJPCPht8M5x

237、2zZjZ0dM3nR3W22Cv8NuzTgw/Iwe/rrclHt4PT912QFh+zq7vmGBEmLCrjVhqi/DHNz8MD523V5h2xPzhRweeE86/8pxw4W2Phhf1gfceD4fuuEv4/v6/Db/Z/bthj92ODc/W4Vq8/bQ1wrRzzB0OPvX8cMl554SLzz88PPyaX/NaOOfQ/cKGOxwVTj1yl7Dz5ruEu2LA7PVw9iH7hY12PDqc+stRYdQWu4a7Xv7k/Pxv68M31zm8+Gr3z+467pfES47fZ9wzZ2PdF2nt8Keqy8ZJpti0/DbLuvl/KsvCDf9

238、bYwl8crdfwibrr97+NVpp4YDNl4nHP9/d/Y6KTAT56ZR+FIRSqRw6KGHRssGEa288srRtZYEClRUYFAhTCA+OO644+Ln+fgRjViG14gtLXHicwLiRUjKdMx61+PKyOhkdC4Jvf9cuOKkncNuP/1p2Ptne4ZdDzw2/PG5cTPvs3+zf9h5j5+HB8dLB3o1nHnsvmHnPQ8MD9Xt6Xgn3HHJz8Muu+/Z9T17dX3fz8M5DzLf3wx/OvTnYddddw6jRu0SfnVHcXmFD8PNFx0bRu28S7jpyfq+6IOXbgzHHrZb2GPP

239、PcMeu+8Wdtvjp+G4e8dZak+N/r+w86idw9l/Hj/v6Inbzo/bz/1LPaut/ifcdvneYbeu32Lw3H233cLuv780xOHz8TvCSbvtGnbZuYsADj4m3FQk6HefCkfuv3PY4/Dfhn/WObF8/e93hZ/usWvXuY0Ke+9/cXhhPOJ6M1zw2wPDqF33Dfe9UjzgG+HcEw4Io3bbP9z/ai2aeCtccNqxYdddXPcDw6V/GWctPH3eqWHf3bqIres7R517w3hW4YsPXhm3n3z1+AHmniA4jAwEyD2S6sqid+0QEZJCNN5LZVkQ

240、B2FCEizYT0a+A4XHTdMcT0ogXG5SEWIOYl7VAWnHd+6VSmPKCOj09Hx7riMjFYhyaFT9rvguBiFQDR3nKA2V5v3kmXDn6/kCmsmQSkY+R/ceuVivvaTP1QG62nKKaccKxdOELfwfUNZop0xvJBJKCOjBiQ5GvCTrDZVV+ZOo3hDKinJkJUEapyxYkDgnDJLgJmkmDtOwJlSShKrYDaVHGuoDPEoyxZw1Z177rljG9UdVVZVIc2MjE5EJqGMjBpQpBLBqDlGLMANRxWHOCjYqOSoubxHYkspR+1Ejm37DDPME

241、D8rMTHBAo/iSo6b8mBqgYCBxcNaSk0VgYyMoYRMQhkZNaB6gQXR6gUZrsRDVgrLyPMqqIxAGpyRkZFJKCMjIyNjEJFJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjIyNj0JBJKCMjI

242、yNj0JBJKCMjIyNj0JBJqMMxYsSIPrWMjIyeUdVvemoZ/UO+gh2OvnSC3GEyMnpH7lMDi3wFOxzlTtBTp+i1wzx+dFh2xLLh6Me7X2dkDEM0rU9duW18P7Ztr+zemFFGL6NSRrujqsOUW0Lx+ScwtsNkEsoY3ij3k9SPii2h+Hw8mNAl4omTuxFh2dyxKtHDqJTRCeitQ9TVYcbiyrBtJqGMYY5m9KnHr7wyFLvR40cvG0Yse/R42zLGoLdRKaPNkTpB+RHKHaRWhxmHTEIZGc3tU93gacgkVIk6r2BGu6KqE

243、9hWa3vPyCSUkdHcPjUGLKHsjqtGfVcwo21R7ATljlL1umdkEsrI6K0PlV/3jq5+la2gmqjnCma0MVKnKHeMqtfFbdXIJJSRUdVfar0ubquFK7fdtqtnZdRC71cwo63RUycov9d7h8kklJHRzD7FDZfV2T2jt1Epo81R7ASe96UDfRKZhDIymtanrtx2/DhQ1+tMSJ9Eb6NSRpujqhPU6jg9dpjuXIb02dxZMoYravWdWturECXZ3Z8Z17Jbrgo9jEoZnYBanQDK7/W0b0ZGxhjkPjWwyFeww6ET9KVlZGT0j

244、Kp+01PL6A9C+H9MzkFkostBfQAAAABJRU5ErkJgguiPgeS8mOe9kQ=(1)H1=40kJmol1请标出该反应电子转移的方向和数目(2)温度对CO2的平衡转化率和催化剂催化效率的影响如图1,下列说法正确的是ABA生成乙烯的速率:v(M)有可能小于v(N)B平衡常数:KMKNC催化剂会影响CO2的平衡转化率(3)若投料比n(H2):n(CO2)=3:1,则图中M点时,乙烯的体积分数为7.7%(保留两位有效数字)(4)为提高CO2的平衡转化率,除改变温度外,还可采取的措施有增大压强,或提高氢气和二氧化碳物质的量的比值,或将产物乙烯气体分离出来等(任写一条)(5

245、)电解法可制取乙烯(图2),电极a接电源的负极极,该电极反应式为2CO2+12H+12eCH2=CH2+4H2O【考点】化学平衡的计算;氧化还原反应;化学平衡的影响因素;电解原理 【分析】(1)已知:6H2(g)+2CO2(g)CH2=CH2(g)+4H2O(g)H12H2(g)+O2(g)=2H2O(g)H2=480kJmol1CH2=CH2(g)+3O2(g)=2CO2(g)+2H2O(g)H3=1400kJmol1根据盖斯定律:3=,则焓变H1=3H2H3;该反应中氢元素化合价由0价变为+1价,该反应中转移电子数=12(10)=12,用单线桥表示时,在反应物中由化合价升高的元素指向化合价

246、降低的元素,在线桥上注明转移电子数目即可;(2)A生成乙烯的速率既受温度影响,也受催化剂影响;B根据(1)中的计算可知,该反应为放热反应还是吸热反应,若为放热反应,则升温平衡逆向移动,平衡常数减小,反之增大;C催化剂不影响平衡移动;(3)若投料比n(H2):n(CO2)=3:1,设H2为3mol、CO2为1mol,M点时CO2的转化率为50%,则转化的二氧化碳为0.5mol,计算出平衡时各组分的物质的量,乙烯的体积分数=100%;(4)为提高CO2的平衡转化率,应改变条件使平衡正向移动,除改变温度外,还可采取的措施是增大压强,或提高氢气和二氧化碳物质的量的比值,或将产物乙烯气体分离出来等;(5

247、)由图可知,a电极通入二氧化碳,生成乙烯,发生还原反应,则a为阴极,二氧化碳获得电子,与通过质子交换膜的氢离子反应生成乙烯与水【解答】解:(1)6H2(g)+2CO2(g)CH2=CH2(g)+4H2O(g)H12H2(g)+O2(g)=2H2O(g)H2=480kJmol1CH2=CH2(g)+3O2(g)=2CO2(g)+2H2O(g)H3=1400kJmol1根据盖斯定律:3=,则H1=3H2H3=40 kJmol1;该反应中氢元素化合价由0价变为+1价,该反应中转移电子数=12(10)=12,所以其转移电子的方向和数目为;故答案为:40 kJmol1;(2)A生成乙烯的速率既受温度影响

248、,也受催化剂影响,M点催化剂催化效率高但温度低,尽管N点催化剂催化效率低但温度高,所以v(M)有可能小于v(N),故A正确;B由于该反应是放热反应,升温平衡逆向移动,则平衡常数:KMKN,故B正确;C催化剂可以缩短到达平衡的时间,但不影响平衡移动,所以不会影响CO2的平衡转化率,故C错误,故选:AB;(3)若投料比n(H2):n(CO2)=3:1,设H2为3mol、CO2为1mol,M点时CO2的转化率为50%,则转化的二氧化碳为0.5mol,则: 6H2(g)+2CO2(g)CH2=CH2(g)+4H2O(g)起始(mol):3 1 0 0变化(mol):1.5 0.5 0.25 1平衡(m

249、ol):1.5 0.5 0.25 1乙烯的体积分数=100%=7.7%,故答案为:7.7%;(4)为提高CO2的平衡转化率,应改变条件使平衡正向移动,除改变温度外,还可采取的措施是增大压强,或提高氢气和二氧化碳物质的量的比值,或将产物乙烯气体分离出来等,故答案为:增大压强,或提高氢气和二氧化碳物质的量的比值,或将产物乙烯气体分离出来等;(5)由图可知,a电极通入二氧化碳,生成乙烯,发生还原反应,则a为阴极,连接电源的负极,二氧化碳获得电子,与通过质子交换膜的氢离子反应生成乙烯与水,电极反应式为:2CO2+12H+12eCH2=CH2+4H2O,故答案为:负极;2CO2+12H+12eCH2=C

250、H2+4H2O【点评】本题考查反应热计算、氧化还原反应、化学平衡计算与影响因素、电解原理等,综合性强,需要学生具备扎实的基础与灵活运用的能力,难度中等11(16分)铝硅合金材料性能优良铝土矿(含30% SiO2、40.8% Al2O3和少量Fe2O3等)干法制取该合金的工艺如图1:(1)若湿法处理铝土矿,用强酸浸取时,所得溶液中阳离子有Al3+、Fe3+、H+(2)铝硅合金材料中若含铁,会影响其抗腐蚀性原因是铁与铝形成原电池,加快了铝的腐蚀(3)焙烧除铁反应:4(NH4)2SO4+Fe2O32NH4Fe(SO4)2+3H2O+6NH3(Al2O3部分发生类似反应)氧化物转化为硫酸盐的百分率与温

251、度的关系如图2,最适宜焙烧温度为300指出气体的用途制氮肥、用硫酸吸收气体(氨气)循环到焙烧过程中等(任写一种)(4)操作包括:加水溶解、过滤若所得溶液中加入过量NaOH溶液,含铝微粒发生反应的离子方程式为Al3+4OH=AlO2+2H2O(5)用焦炭还原SiO2、Al2O3会产生中间体SiC、Al4C3任写一个高温下中间体又与Al2O3反应生成铝、硅单质的化学方程式Al4C3+Al2O36Al+3CO(6)不计损失,投入1t铝土矿,当加入27kg纯铝后,铝硅合金中m:n=9:5(摩尔质量:SiO260g/mol Al2O3102g/mol)【考点】物质分离和提纯的方法和基本操作综合应用 【分

252、析】铝土矿(含30% SiO2、40.8% Al2O3和少量Fe2O3等)加硫酸铵焙烧,Fe2O3转化为NH4Fe(SO4)2同时生成氨气,加水溶解、过滤,滤渣为SiO2和Al2O3,用焦炭在高温条件下还原SiO2、Al2O3得到硅铝熔体,在加纯铝搅拌,得到硅铝合金;(1)铝土矿中的氧化铝和氧化铁能溶于强酸;(2)Al、Fe形成原电池,活泼性强的做负极;(3)焙烧时尽可能是氧化铁反应,而氧化铝不反应;氨气可以制氮肥,也可以制备硫酸铵循环利用;(4)根据流程分析解答;溶液中含有铝离子与氢氧根离子生成偏铝酸根离子;(5)在高温条件下,Al4C3与Al2O3反应生成Al和CO;(6)铝土矿中含30%

253、 SiO2、40.8% Al2O3,又加入27kg纯铝,根据质量守恒计算铝硅的质量和质量比【解答】解:铝土矿(含30% SiO2、40.8% Al2O3和少量Fe2O3等)加硫酸铵焙烧,Fe2O3转化为NH4Fe(SO4)2同时生成氨气,加水溶解、过滤,滤渣为SiO2和Al2O3,用焦炭在高温条件下还原SiO2、Al2O3得到硅铝熔体,在加纯铝搅拌,得到硅铝合金;(1)铝土矿中的氧化铝和氧化铁能溶于强酸生成Al3+、Fe3+,另外还有剩余的H+,所以溶液中的阳离子有Al3+、Fe3+、H+;故答案为:Al3+、Fe3+、H+;(2)Al、Fe形成原电池,Al活泼性比Fe强的做负极,被腐蚀,所以

254、铝硅合金材料中若含铁,容易发生电化学腐蚀;故答案为:铁与铝形成原电池,加快了铝的腐蚀;(3)焙烧时尽可能是氧化铁反应,而氧化铝不反应,由图可知在300时,氧化铁转化为硫酸盐的百分率很高,而氧化铝转化为硫酸盐的百分率最低,所以最适宜焙烧温度为300;气体为氨气,氨气可以用于制氮肥,也可以用硫酸吸收来备硫酸铵循环到焙烧过程中;故答案为:300;制氮肥、用硫酸吸收气体(氨气)循环到焙烧过程中;(4)由流程分析可知,操作包括:加水溶解、过滤;溶液中含有铝离子与氢氧根离子生成偏铝酸根离子,其反应的离子方程式为:Al3+4OH=AlO2+2H2O;故答案为:过滤;Al3+4OH=AlO2+2H2O;(5)

255、在高温条件下,Al4C3与Al2O3反应生成Al和CO,其反应的方程式为:Al4C3+Al2O36Al+3CO;故答案为:Al4C3+Al2O36Al+3CO;(6)投入1t铝土矿,加入27kg纯铝,已知铝土矿中含30% SiO2、40.8% Al2O3,则Al的总质量为:1000kg40.8%+27kg=243kg,Si的总质量为1000kg30%=140kg,则铝硅合金中m:n=:=9:5,故答案为:9:5【点评】本题考查了物质分离和提纯基本操作,注意把握流程中发生的化学反应为解答的关键,注重信息与所学知识的结合分析解决问题,侧重知识迁移应用能力的考查,题目难度中等12(16分)现代传感信

256、息技术在化学实验中有广泛的应用某小组用传感技术测定喷泉实验中的压强变化来认识喷泉实验的原理(图1)(1)制取氨气烧瓶中制取NH3的化学方程式为NH3H2O+CaO=Ca(OH)2+NH3,检验三颈瓶集满NH3的方法是将湿润的红色石蕊试纸靠近瓶口c,试纸变蓝色,证明NH3已收满;或:将蘸有浓盐酸的玻璃棒靠近瓶口c,有白烟生成,证明NH3已收满(2)关闭a,将吸有2mL水的胶头滴管塞紧颈口c,打开b,完成喷泉实验,电脑绘制三颈瓶内气压变化曲线(图2)图2中D点时喷泉最剧烈测定NH3H2O的浓度及电离平衡常数Kb(3)从三颈瓶中用碱式滴定管(或移液管)(填仪器名称)量取25.00mL氨水至锥形瓶中,

257、用0.0500molL1HCl滴定用pH计采集数据、电脑绘制滴定曲线如下图(4)据图,计算氨水的浓度为0.0450molL1;写出NH3H2O电离平衡常数Kb的表达式,Kb=,当pH=11.0时计算Kb的近似值,Kb2.2105(5)关于该滴定实验的说法中,正确的是ACA锥形瓶中有少量蒸馏水不影响测定结果B未滴加酸碱指示剂,实验结果不科学C酸式滴定管未用盐酸润洗会导致测得氨水的浓度偏高D滴定终点时俯视读数会导致测得氨水的浓度偏高【考点】性质实验方案的设计 【分析】(1)CaO和水反应生成氢氧化钙且放出热量,放出的热量促进一水合氨分解,据此书写方程式;氨气和水反应生成一水合氨,一水合氨电离出氢氧

258、根离子而导致氨水溶液呈碱性,红色石蕊试液遇碱蓝色,氨气也能和HCl反应生成白烟;(2)三颈瓶内气体与外界大气压压强之差越大,其喷泉越剧烈;(3)可以用移液管或碱式滴定管量取碱性溶液;(4)氨水的物质的量浓度=mol/L=mol/L;弱电解质电离平衡常数Kb=;pH=11的氨水中c(OH)=0.001mol/L,c(OH)c(NH4+)=0.001mol/L,c(NH3H2O)0.0450mol/L,根据Kb=计算电离平衡常数;(5)A锥形瓶中有少量蒸馏水不影响氨水的物质的量;B利用pH计判断滴定终点更准确;C酸式滴定管未用盐酸润洗会导致盐酸浓度偏低;D滴定终点时俯视读数会导致盐酸物质的量偏小【

259、解答】解:(1)CaO和水反应生成氢氧化钙且放出热量,放出的热量促进一水合氨分解,该反应方程式为NH3H2O+CaO=Ca(OH)2+NH3;氨气和水反应生成一水合氨,一水合氨电离出氢氧根离子而导致氨水溶液呈碱性,红色石蕊试液遇碱蓝色,氨气也能和HCl反应生成白烟,所以氨气的检验方法为:将湿润的红色石蕊试纸靠近瓶口c,试纸变蓝色,证明NH3已收满;或:将蘸有浓盐酸的玻璃棒靠近瓶口c,有白烟生成,证明NH3已收满;故答案为:NH3H2O+CaO=Ca(OH)2+NH3;将湿润的红色石蕊试纸靠近瓶口c,试纸变蓝色,证明NH3已收满;或:将蘸有浓盐酸的玻璃棒靠近瓶口c,有白烟生成,证明NH3已收满;

260、(2)三颈瓶内气体与外界大气压压强之差越大,其反应速率越快,D点压强最小、大气压不变,所以大气压和D点压强差最大,则喷泉越剧烈,故答案为:D;(3)氨水中含有一水合氨,一水合氨电离出氢氧根离子而使溶液呈碱性,所以用移液管或碱式滴定管量取氨水,故答案为:碱式滴定管(或移液管);(4)氨水的物质的量浓度=mol/L=mol/L=0.0450mol/L;弱电解质电离平衡常数Kb=;pH=11的氨水中c(OH)=0.001mol/L,c(OH)c(NH4+)=0.001mol/L,c(NH3H2O)0.0450mol/L,根据Kb=2.2105;故答案为:0.0450;2.2105;(5)A锥形瓶中有少量蒸馏水不影响氨水的物质的量,所以不影响测定结果,故A正确;B利用pH计判断滴定终点更准确,不需要酸碱指示剂即可,故B错误;C酸式滴定管未用盐酸润洗会导致盐酸浓度偏低,则使用盐酸的体积偏大,所以导致测定结果偏高,故C正确;D滴定终点时俯视读数会导致盐酸体积偏小,则盐酸物质的量偏小,测定结果偏低,故D错误故选AC【点评】本题考查性质实验方案设计,侧重考查学生分析、判断及实验操作能力,明确滴定原理、喷泉实验原理、弱电解质电离等知识点是解本题关键,(5)题A为易错点,题目难度中等

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3