ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:867KB ,
资源ID:578031      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-578031-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省南京市第十三中学2020-2021学年高一下学期期中考试数学试题 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省南京市第十三中学2020-2021学年高一下学期期中考试数学试题 WORD版含答案.doc

1、20202021学年度第二学期高一年级期中检测数学试题时量:120分钟 总分:150分2021.4注意事项:1答题前,考生先将自己的姓名、准考证号填写在答题卡上并检查试卷.2选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚3请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效4保持卡面清洁,不折叠,不破损一、单项选择题:本大题共8小题,每小题5分,共40分.1. 设,则A. B. C. D. 2. 已知实数满足若恒成立,那么k的取值范围是( )A. B. C. D. 3.

2、 在中,、对边分别是、.若,则的最大值为A. 3B. C. D. 4. 素数也叫质数,法国数学家马林梅森是研究素数的数学家中成就很高的一位,因此后人将“2n1”形式(n是素数)的素数称为梅森素数.已知第20个梅森素数为P244231,第19个梅森素数为Q242531,则下列各数中与最接近的数为(参考数据:lg20.3) ( )A. 1045B. 1051C. 1056D. 10595. 在ABC中,角A,B,C的对边分别是a,b,c,bcosAca,点D在AC上,2ADDC,BD2,则ABC的面积的最大值为( )A. B. C. 4D. 66. 欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明

3、的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,表示的复数在复平面中位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则A. ,且直线是相交直线B. ,且直线是相交直线C. ,且直线是异面直线D. ,且直线是异面直线8. 定义在上偶函数对任意实数都有,且当时,则函数的零点个数为( )A. B. C. D. 二、多项选择题:本大题共4题,每小题5分,共20分9. 正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系.在如图所示的正五角星中,以为顶点的多边形为正五边形且,下列关系

4、中正确的是( )A. B. C. D. 10. 下列命题中正确的有A. 空间内三点确定一个平面B. 棱柱的侧面一定是平行四边形C. 分别在两个相交平面内的两条直线如果相交,则交点只可能在两个平面的交线上D. 一条直线与三角形的两边都相交,则这条直线必在三角形所在的平面内11. 在四面体中,分别为的中点,则下列说法中正确的是( )A. 四点共面B. C. D. 四边形为梯形12. 已知函数与的图象上存在关于y轴对称的点,则下列a的取值满足条件的是( )A. eB. 1C. D. 三、填空题:本大题共4题,每小题5分,共20分13. 已知,则的最小值是_14. 在ABC中,设角A,B,C对应的边分

5、别为,记ABC的面积为S,且,则的最大值为_.15. 高斯是德国著名的数学家,享有“数学王子”之称,以他的名字“高斯”命名的成果达100多个,其中的一个成果是:设,则称为高斯函数,表示不超过x的最大整数,如,并用表示x的非负纯小数若方程有且仅有4个实数根,则正实数k的取值范围为_16. 在正三棱锥中,过AB的平面将其体积平分.则棱与平面所成角的余弦值为_四、解答题:本大题共6小题,其中17题10分,其余每小题12分,共70分17. 平面四边形中,.(1)求的面积;(2)设为的中点,且,求四边形周长的最大值.18. 如图,是正方形,是正方形的中心,底面,是的中点求证:(1)平面;(2)平面平面1

6、9. 已知向量(1)若,求的值;(2)若,当时,求函数最大值;20. 的内角所对的边分别为.(1)若成等差数列,证明:;(2)若成等比数列,求的最小值.21. 已知函数的最小正周期为(1)求函数的单调递增区间;(2)将函数的图像向左平移个单位,再向上平移1个单位,得到函数的图像,若在上至少含有10个零点,求b的最小值22. 已知表示非空集合A中的元素的个数(1)定义,若,设实数a的所有可能取值构成集合S,求的值;(2)已知集合,对于M的子集N若存在不大于1000的正整数m,使得对于N中的任意一对元素,都有,求的最大值20202021学年度第二学期高一年级期中检测数学试题时量:120分钟 总分:

7、150分2021.4注意事项:1答题前,考生先将自己的姓名、准考证号填写在答题卡上并检查试卷.2选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚3请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效4保持卡面清洁,不折叠,不破损一、单项选择题:本大题共8小题,每小题5分,共40分.1. 设,则A. B. C. D. 【答案】B2. 已知实数满足若恒成立,那么k的取值范围是( )A. B. C. D. 【答案】D3. 在中,、对边分别是、.若,则的最大值为A. 3B. C.

8、 D. 【答案】B4. 素数也叫质数,法国数学家马林梅森是研究素数的数学家中成就很高的一位,因此后人将“2n1”形式(n是素数)的素数称为梅森素数.已知第20个梅森素数为P244231,第19个梅森素数为Q242531,则下列各数中与最接近的数为(参考数据:lg20.3) ( )A. 1045B. 1051C. 1056D. 1059【答案】B5. 在ABC中,角A,B,C的对边分别是a,b,c,bcosAca,点D在AC上,2ADDC,BD2,则ABC的面积的最大值为( )A. B. C. 4D. 6【答案】A6. 欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大

9、到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,表示的复数在复平面中位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B7. 如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则A. ,且直线是相交直线B. ,且直线是相交直线C. ,且直线是异面直线D. ,且直线是异面直线【答案】B8. 定义在上偶函数对任意实数都有,且当时,则函数的零点个数为( )A. B. C. D. 【答案】C二、多项选择题:本大题共4题,每小题5分,共20分9. 正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系.在如图所示的正五角星中,以为顶点的多边形为正五边形且,下列关

10、系中正确的是( )A. B. C. D. 【答案】AC10. 下列命题中正确的有A. 空间内三点确定一个平面B. 棱柱的侧面一定是平行四边形C. 分别在两个相交平面内的两条直线如果相交,则交点只可能在两个平面的交线上D. 一条直线与三角形的两边都相交,则这条直线必在三角形所在的平面内【答案】BC11. 在四面体中,分别为的中点,则下列说法中正确的是( )A. 四点共面B. C. D. 四边形为梯形【答案】ABC12. 已知函数与的图象上存在关于y轴对称的点,则下列a的取值满足条件的是( )A. eB. 1C. D. 【答案】BCD三、填空题:本大题共4题,每小题5分,共20分13. 已知,则的

11、最小值是_【答案】14. 在ABC中,设角A,B,C对应的边分别为,记ABC的面积为S,且,则的最大值为_.【答案】15. 高斯是德国著名的数学家,享有“数学王子”之称,以他的名字“高斯”命名的成果达100多个,其中的一个成果是:设,则称为高斯函数,表示不超过x的最大整数,如,并用表示x的非负纯小数若方程有且仅有4个实数根,则正实数k的取值范围为_【答案】16. 在正三棱锥中,过AB的平面将其体积平分.则棱与平面所成角的余弦值为_【答案】四、解答题:本大题共6小题,其中17题10分,其余每小题12分,共70分17. 平面四边形中,.(1)求的面积;(2)设为的中点,且,求四边形周长的最大值.【

12、答案】(1)(2)18. 如图,是正方形,是正方形的中心,底面,是的中点求证:(1)平面;(2)平面平面【答案】(1)见解析(2)见解析19. 已知向量(1)若,求的值;(2)若,当时,求函数最大值;【答案】(1);(2)20. 的内角所对的边分别为.(1)若成等差数列,证明:;(2)若成等比数列,求的最小值.【答案】(1)证明见解析;(2).21. 已知函数的最小正周期为(1)求函数的单调递增区间;(2)将函数的图像向左平移个单位,再向上平移1个单位,得到函数的图像,若在上至少含有10个零点,求b的最小值【答案】(1);(2).22. 已知表示非空集合A中的元素的个数(1)定义,若,设实数a的所有可能取值构成集合S,求的值;(2)已知集合,对于M的子集N若存在不大于1000的正整数m,使得对于N中的任意一对元素,都有,求的最大值【答案】(1)5;(2)1333.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3