1、深圳市高级中学20172018学年第二学期期中考试高二文科数学试卷命题人:雷蕾 审题人:高贺清 全卷共计150分。考试时间为120分钟。注意事项:1、答题前,考生务必将自己的姓名、考号、座位号涂写在答题卡上。2、选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上。3、考试结束,监考人员将答题卡收回。第卷(60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知,函数的定义域为,集合, 则 ( )A B C D2. 复数满足,则 ( )A B C D3. 执行如右
2、上图所示的程序框图,若输出的结果是8,则输入的数是 ( )A. 或 B. 或 C. 或 D. 或4. 某地区有大型商场个,中型商场个,小型商场个,为了掌握该地区商场的营业情况,采用分层抽样的方法抽取一个容量为的样本,则抽取的中型商场的个数为 ( )A. B. C. D. 5. 曲线:在点处的切线方程为 ( )A B C D6. 设实数满足约束条件,则的最大值为( )A. -3 B. -2 C. 1 D. 27. 设实数满足,则的大小关系为 ( )A. B. C. D. 8. 一个几何体的三视图如图所示,则该几何体的体积为( )A. B. C. D. 9. 将函数的图象上各点的横坐标缩小为原来的
3、,再向右平移个单位后得到的图象关于直线对称,则的最小值是 ()A. B. C. D. 10. 函数的单调递减区间是 ( )A. B. C. D. 11. 若双曲线与椭圆有公共焦点,则的值为( )A. B. C. D. 12. 设分别是内角的对边,若依次成公差不为0的等差数列,则 ( )A. 依次成等差数列 B. 依次成等差数列C. 依次成等比数列 D. 依次成等比数列 第卷(90分;本卷包括必考题和选考题两部分)第(13)(21)题为必考题,每个试题都须作答。第(22)(23)题为选考题,考生根据要求作答。二、填空题(本大题共4小题,每小题5分,共20分)13. 已知椭圆的中心在原点,焦点在轴
4、,焦距为,且长轴长是短轴长的倍.椭圆的标准方程为 .14. 已知两个单位向量,的夹角为,则 ;15. 碗里有花生馅汤圆2个、豆沙馅汤圆3个、芝麻馅汤圆4个,从中随机舀取一个品尝,不是豆沙馅的概率为_16. 在中, , , ,则的面积为_三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分) 已知数列的前项和满足: .(1)求的通项公式;(2)设,求数列的前项和.18.(本小题满分12分)如图,在四棱锥中,四边形为正方形, 平面, , 是上一点.(1)若,求证: 平面;(2)若为的中点,且,求三棱锥的体积.19. (本小题满分12分)2017年5月14日至1
5、5日,“一带一路”国际合作高峰论坛在中国首都北京举行,会议期间,达成了多项国际合作协议.假设甲、乙两种品牌的同类产品出口某国家的市场销售量相等,该国质量检验部门为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取300个进行测试,结果统计如下图所示,已知乙品牌产品使用寿命小于200小时的概率估计值为.(1)求的值;(2)估计甲品牌产品寿命小于200小时的概率;(3)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是乙品牌的概率20. (本小题满分12分)已知圆的圆心在轴正半轴上,且轴和直线均与圆相切.(1)求圆的标准方程;(2)若直线与圆相交于两点,点,且为锐角,求实数的取值范围.21. (本小题满分12分)已知函数(1)令,试讨论的单调性;(2)若对恒成立,求的取值范围.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分。22. (本小题满分10分)在平面直角坐标系中,曲线的参数方程是 (为参数),直线的参数方程是(为参数)(1)分别求曲线、直线的普通方程;(2)直线与交于两点,则求的值.23. (本小题满分10分)设函数.(1)解不等式;(2)若存在,使不等式成立,求实数的取值范围.