收藏 分享(赏)

2014届高三数学(理)(人教新课标)一轮复习之双基限时训练:数列求和.doc

上传人:高**** 文档编号:573598 上传时间:2024-05-29 格式:DOC 页数:7 大小:106.50KB
下载 相关 举报
2014届高三数学(理)(人教新课标)一轮复习之双基限时训练:数列求和.doc_第1页
第1页 / 共7页
2014届高三数学(理)(人教新课标)一轮复习之双基限时训练:数列求和.doc_第2页
第2页 / 共7页
2014届高三数学(理)(人教新课标)一轮复习之双基限时训练:数列求和.doc_第3页
第3页 / 共7页
2014届高三数学(理)(人教新课标)一轮复习之双基限时训练:数列求和.doc_第4页
第4页 / 共7页
2014届高三数学(理)(人教新课标)一轮复习之双基限时训练:数列求和.doc_第5页
第5页 / 共7页
2014届高三数学(理)(人教新课标)一轮复习之双基限时训练:数列求和.doc_第6页
第6页 / 共7页
2014届高三数学(理)(人教新课标)一轮复习之双基限时训练:数列求和.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网() 您身边的高考专家巩固双基,提升能力一、选择题1(2013菏泽调研)等差数列an的通项公式an2n1,数列(),其前n项和为Sn,则Sn等于()A.B.C. D以上都不对解析:an2n1,.Sn. 答案:B2(2013济宁月考)若数列an的通项为an4n1,bn,nN*,则数列bn的前n项和是()An2 Bn(n1)Cn(n2) Dn(2n1)解析:a1a2an(411)(421)(4n1)4(12n)n2n(n1)n2n2n,bn2n1,b1b2bn(211)(221)(2n1)n22nn(n2). 答案:C3已知数列an的前n项和Snn24n2,则|a1|a2|a10|()A

2、66B65C61D56解析:当n1时,a1S11;当n2时,anSnSn1n24n2(n1)24(n1)22n5.a21,a31,a43,a1015.|a1|a2|a10|1126466. 答案:A4若Sn1234(1)n1n,则S17S33S50等于()A1 B1 C0 D2解析:Sn故S179,S3317,S5025,S17S33S501. 答案:A5数列an的通项公式an(nN*),若前n项和为Sn,则Sn为()A.1B.1C.(1)D.(1)解析:an(),Sn(1)(1)(1). 答案:D6已知数列an的前n项和Snn26n,则|an|的前n项和Tn()A6nn2Bn26n18C.D

3、.解析:由Snn26n,得an是等差数列,且首项为5,公差为2.an5(n1)22n7.n3时,an0;n3时an0.Tn 答案:C二、填空题7设an是等差数列,bn是各项都为正数的等比数列,且a1b11,a3b519,a5b39,则数列anbn的前n项和Sn_.解析:由条件易求出ann,bn2n1(nN*)Sn11221322n2n1,2Sn12222(n1)2n1n2n.由,得Sn121222n1n2n,Sn(n1)2n1. 答案:(n1)2n18在数列an中,an,又bn,则数列bn的前n项和为_解析:an,bn8.b1b2bn8. 答案:9若数列an是正项数列,且n23n(nN*),则

4、_.解析:令n1,得4,a116.当n2时,(n1)23(n1)与已知式相减,得(n23n)(n1)23(n1)2n2.an4(n1)2.n1时,a1适合an.an4(n1)2.4n4,2n26n. 答案:2n26n三、解答题10设数列an满足a12,an1an322n1.(1)求数列an的通项公式;(2)令bnnan,求数列bn的前n项和Sn.解析:(1)由已知,当n1时,an1(an1an)(anan1)(a2a1)a13(22n122n32)222(n1)1.当n2时an22n1,而a12,符合上式,于是数列an的通项公式为an22n1.(2)由bnnann22n1,知Sn1222332

5、5n22n1.从而22Sn123225327n22n1.,得(122)Sn2232522n1n22n1.即Sn(3n1)22n1211已知等差数列an满足a37,a5a726,an的前n项和为Sn.(1)求an及Sn;(2)令bn(nN*),求数列bn的前n项和Tn.解析:(1)设等差数列an的公差为d.因为a37,a5a726,所以解得故an32(n1)2n1,Sn3n2n22n.(2)由(1)知,an2n1,从而bn,从而Tn,即数列bn的前n项和Tn.12已知数列an是首项为a1,公比q的等比数列,设bn23logan(nN*),数列cn满足cnanbn.(1)求数列bn的通项公式;(2)求数列cn的前n项和Sn.解析:(1)由题意,知ann(nN*),又bn3logan2,故bn3n2(nN*)(2)由(1),知ann,bn3n2(nN*),cn(3n2)n(nN*)Sn14273(3n5)n1(3n2)n,于是Sn124374(3n5)n(3n2)n1,两式相减,得Sn3(3n2)n1(3n2)n1,Snn(nN*)高考资源网版权所有,侵权必究!

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3