1、2.4.2(2) 平面向量的坐标形式公式的应用习题课学案学习目标:会运用平面向量的坐标形式的一系列公式解决问题。学习重难点:平面向量的坐标形式公式的应用。学习过程【公式】设,则有下列1、2、3组公式:1、向量的加法、减法、数乘、数量积: 2、求两个向量的夹角:cosq = _3、两个向量平行、垂直的判定: _ _4、求向量的模:(1) 若,则(2) 若A(x1,y1),B(x2,y2),则 【高考题】1.(2009湖北卷文)若向量=(1,1),=(1,1),=(4,2),则=( )A. B. C. D. 2.(湖北卷1)设,,则( )A. B. C. D. 3.(2010广东文数)4.(辽宁文
2、)已知向量a=(2, 1),b=(1,k),a(2a-b)= 0 ,则k =( )(A)12 (B)6 (C)6 (D)125.(天津卷14)已知平面向量,若,则_6.(2010安徽文数)设向量,则下列结论中正确的是( )(A) (B) (C) (D) 与垂直7.(全国1文理)已知向量,则与()A垂直 B不垂直也不平行 C平行且同向 D平行且反向8.(2009宁夏文)已知,向量与垂直,则实数的值为( )(A) (B) (C) (D)9.(2009北京卷文)已知向量,如果,那么 A且与同向 B且与反向 C且与同向 D且与反向10.(2009全国卷文)已知向量a = (2,1), ab = 10,a + b = ,则b =( ) (A) (B) (C)5 (D)2511.(广东文)已知向量a =(1,2),b =(1,0),c =(3,4),若为实数,则=A. B. C. 1 D. 212.(重庆文)已知向量,且与共线,那么的值为( )(A) 1 (B) 2 (C) 3 (D) 413.(山东文)已知向量,若与垂直,则( )A B高考资源网w。w-w*k&s%5¥u高考资源网w。w-w*k&s%5¥u