1、高考资源网() 您身边的高考专家高考资源网1.2.2复合函数的求导法则教学目标 理解并掌握复合函数的求导法则教学重点 复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数之积教学难点 正确分解复合函数的复合过程,做到不漏,不重,熟练,正确一创设情景(一)基本初等函数的导数高考资源网公式表函数导数(二)导数的运算法则导数运算法则123(2)推论: (常数与函数的积的导数,等于常数乘函数的导数)二新课讲授复合函数的概念 一般地,对于两个函数和,如果通过变量,可以表示成的函数,那么称这个函数为函数和的复合函数,记作。复合函数的导数 复合函数的导数和函数和
2、的导数间的关系为,即对的导数等于对的导数与对的导数的乘积若,则三典例分析例1求y sin(tan x2)的导数【点评】求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能遗漏求导环节并及时化简计算结果例2求y 的导数【点评】本题练习商的导数和复合函数的导数求导数后要予以化简整理例3求y sin4x cos 4x的导数【解法一】y sin 4x cos 4x(sin2x cos2x)22sin2cos2x1sin22 x1(1cos 4 x)cos 4 xysin 4 x【解法二】y(sin 4 x)(cos 4 x)4 sin
3、3 x(sin x)4 cos 3x (cos x)4 sin 3 x cos x 4 cos 3 x (sin x)4 sin x cos x (sin 2 x cos 2 x)2 sin 2 x cos 2 xsin 4 x【点评】解法一是先化简变形,简化求导数运算,要注意变形准确解法二是利用复合函数求导数,应注意不漏步例4曲线y x(x 1)(2x)有两条平行于直线y x的切线,求此二切线之间的距离【解】y x 3 x 2 2 x y3 x 22 x 2 令y1即3 x22 x 10,解得 x 或x 1于是切点为P(1,2),Q(,),过点P的切线方程为,y 2x 1即 x y 10显然两切线间的距离等于点Q 到此切线的距离,故所求距离为四课堂练习1求下列函数的导数 (1) y =sinx3+sin33x;(2);(3)2.求的导数五回顾总结六布置作业- 3 - 版权所有高考资源网