ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:413KB ,
资源ID:556664      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-556664-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《步步高》2015高考数学(苏教版理)一轮配套文档:第7章7.5 直接证明与间接证明.DOC)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《步步高》2015高考数学(苏教版理)一轮配套文档:第7章7.5 直接证明与间接证明.DOC

1、7.5直接证明与间接证明1.直接证明综合法分析法定义从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知事实吻合为止.思维过程由因导果执果索因证题步骤P(已知)P1P2PnQ(结论)Q(结论)Q1Q2QnP(已知)文字语言因为,所以或由,得要证,只需证,即证符号语言2.间接证明反证法定义要证明某一结论Q是正确的,但不直接证明,而是先去假设Q不成立(即Q的反面非Q是正确的),经过正确的推理,最后得出矛盾,因此说明假设非Q是错误的,从而断定结论Q是正确的,这种证明方法叫做反证法.证明步骤(

2、1)反设假设命题的结论不成立,即假定原结论的反面为真;(2)归谬从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;(3)存真由矛盾结果,断定反设不真,从而肯定原结论成立.适用范围(1)否定性命题;(2)命题的结论中出现“至少”、“至多”、“唯一”等词语的;(3)当命题成立非常明显,而要直接证明所用的理论太少,且不容易说明,而其逆否命题又是非常容易证明的;(4)要讨论的情况很复杂,而反面情况很少.1.判断下面结论是否正确(请在括号中打“”或“”)(1)综合法是直接证明,分析法是间接证明.()(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.()(3)用反证法证明结论“a

3、b”时,应假设“ab”.()(4)反证法是指将结论和条件同时否定,推出矛盾.()(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.()(6)证明不等式最合适的方法是分析法.()2.若a,b,c为实数,且ab0,则下列命题正确的是_.(填序号)ac2abb2答案解析a2aba(ab),ab0,ab0,a2ab.又abb2b(ab)0,abb2,a2abb2.即正确,其余均不正确.3.若a0,b0,ab2,则下列不等式对一切满足条件的a,b恒成立的是_(写出所有正确命题的编号).ab1;a2b22;a3b33;2.答案解析ab()21,成立.欲证,即证ab22,即

4、20,显然不成立.欲证a2b2(ab)22ab2,即证42ab2,即ab1,由知成立.a3b3(ab)(a2abb2)3a2abb2(ab)23ab43abab,由知,ab不恒成立.欲证2,即证2,即ab1,由知成立.4.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为_.答案a,b,c中至少有两个偶数或都是奇数解析自然数a,b,c中为偶数的情况为a,b,c全为偶数;a,b,c中有两个数为偶数;a,b,c全为奇数;a,b,c中恰有一个数为偶数,所以反设为a,b,c中至少有两个偶数或都是奇数.5.如果abab,则a、b应满足的条件是_.答案a0,b0且ab解析ab(a

5、b)(ab)(ba)()(ab)()2().当a0,b0且ab时,()2()0.故abab成立的条件是a0,b0且ab.题型一综合法的应用例1对于定义域为0,1的函数f(x),如果同时满足:对任意的x0,1,总有f(x)0;f(1)1;若x10,x20,x1x21,都有f(x1x2)f(x1)f(x2)成立,则称函数f(x)为理想函数.(1)若函数f(x)为理想函数,证明:f(0)0;(2)试判断函数f(x)2x(x0,1),f(x)x2(x0,1),f(x)(x0,1)是否是理想函数.思维启迪(1)取特殊值代入计算即可证明;(2)对照新定义中的3个条件,逐一代入验证,只有满足所有条件,才能得

6、出“是理想函数”的结论,否则得出“不是理想函数”的结论.(1)证明取x1x20,则x1x201,f(00)f(0)f(0),f(0)0.又对任意的x0,1,总有f(x)0,f(0)0.于是f(0)0.(2)解对于f(x)2x,x0,1,f(1)2不满足新定义中的条件,f(x)2x,(x0,1)不是理想函数.对于f(x)x2,x0,1,显然f(x)0,且f(1)1.任意的x1,x20,1,x1x21,f(x1x2)f(x1)f(x2)(x1x2)2xx2x1x20,即f(x1)f(x2)f(x1x2).f(x)x2(x0,1)是理想函数.对于f(x),x0,1,显然满足条件.对任意的x1,x20

7、,1,x1x21,有f2(x1x2)f(x1)f(x2)2(x1x2)(x12x2)20,即f2(x1x2)f(x1)f(x2)2.f(x1x2)f(x1)f(x2),不满足条件.f(x)(x0,1)不是理想函数.综上,f(x)x2(x0,1)是理想函数,f(x)2x(x0,1)与f(x)(x0,1)不是理想函数.思维升华用综合法证题是从已知条件出发,逐步推向结论,综合法的适用范围:(1)定义明确的问题,如证明函数的单调性、奇偶性,求证无条件的等式或不等式.(2)已知条件明确,并且容易通过分析和应用条件逐步逼近结论的题型.在使用综合法证明时,易出现的错误是因果关系不明确,逻辑表达混乱.定义:若

8、数列An满足An1A,则称数列An为“平方递推数列”.已知数列an中,a12,点(an,an1)在函数f(x)2x22x的图象上,其中n为正整数,证明:数列2an1是“平方递推数列”.证明点(an,an1)在函数f(x)2x22x的图象上,an12a2an,2an114a4an1(2an1)2,2an1是“平方递推数列”.题型二分析法的应用例2已知m0,a,bR,求证:()2.思维启迪将要证分式化成整式,再合并同类项.证明m0,1m0.所以要证原不等式成立,只需证(amb)2(1m)(a2mb2),即证m(a22abb2)0,即证(ab)20,而(ab)20显然成立,故原不等式得证.思维升华分

9、析法的特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”或本身已经成立的定理、性质或已经证明成立的结论等,运用分析法必须考虑条件的必要性是否成立.通常采用“欲证只需证已知”的格式,在表达中要注意叙述形式的规范.已知a,b(0,),求证:(a3b3)(a2b2).证明因为a,b(0,),所以要证原不等式成立,只需证(a3b3)6(a2b2) 6,即证(a3b3)2(a2b2)3,即证a62a3b3b6a63a4b23a2b4b6,只需证2a3b33a4b23a2b4.因为a,b(0,),所以即证2ab2ab成立,以上步骤步步可逆,所以(a3b3)(a2b2).题型三反证法的应用例

10、3已知数列an的前n项和为Sn,且满足anSn2.(1)求数列an的通项公式;(2)求证:数列an中不存在三项按原来顺序成等差数列.思维启迪(1)先利用SnSn1an(n2)两式相减得an和an1的关系,再求an;(2)用反证法证明.(1)解当n1时,a1S12a12,则a11.又anSn2,所以an1Sn12, 两式相减得an1an,所以an是首项为1,公比为的等比数列,所以an.(2)证明反证法:假设存在三项按原来顺序成等差数列,记为ap1,aq1,ar1(pqr,且p,q,rN*),则2,所以22rq2rp1.又因为pqr,所以rq,rpN*.所以式左边是偶数,右边是奇数,等式不成立.所

11、以假设不成立,原命题得证.思维升华(1)当一个命题的结论是以“至多”、“至少”、“唯一”或以否定形式出现时,可用反证法来证,反证法关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等.(2)用反证法证明不等式要把握三点:必须否定结论;必须从否定结论进行推理;推导出的矛盾必须是明显的.在ABC中,A、B、C的对边分别为a、b、c,若a、b、c三边的倒数成等差数列,求证:B90.证明假设Ba,bc.,相加得,这与矛盾.故B90不成立,即B0,bn0,所以ab(anbn)2,从而10知q0.下证q1.若q1,则a1logq时,an1a1qn,与(*

12、)矛盾;10分若0qa21,故当nlogq时,an1a1qn1,与(*)矛盾.12分综上,q1,故ana1(nN*),所以11,于是b1b22解析要比较与2的大小,只需比较()2与(2)2的大小,只需比较672与854的大小,只需比较与2的大小,只需比较42与40的大小,4240,2.2.若a,bR,则下面四个式子中恒成立的是_.(填序号)lg(1a2)0a2b22(ab1)a23ab2b21,a,b,则a,b的大小关系为_.答案a,即a0,b0,则2的最小值是_. 答案4解析因为22 22( )4.当且仅当且 ,即ab1时,取“”.5.用反证法证明命题“若a,bN,ab能被3整除,那么a,b

13、中至少有一个能被3整除”时,假设应为_.答案a,b都不能被3整除解析由反证法的定义可知,否定结论,即“a,b中至少有一个能被3整除”的否定是“a,b都不能被3整除”,故选B.6.已知a1,b1,c1,a2,b2,c2都是非零实数,不等式a1x2b1xc10,a2x2b2xc20的解 集分别为M,N,则“”是“MN”成立的_条件(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”中的一种).答案既不充分又不必要解析当时,可取a1b1c11,a2b2c21,则M,NR,故D/MN;当MN时,可取a1b1c11,a21,b22,c23,则,即MND/.综上知“”是“MN”成立的既不充分又不

14、必要条件.7.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),则第60个“整数对”是_.答案(5,7)解析依题意,把“整数对”的和相同的分为一组,不难得知每组中每个“整数对”的和为n1,且每组共有n个“整数对”,这样的前n组一共有个“整数对”,注意到60b与a0,q0,前n项和为Sn,则与的大小关系为_.答案解析当q1时,3,5,所以0且q1时,0,所以有.综上可知.4.函数f(x)的定义域为D,若对于任意x1,x2D,当x1x2时,都有f(x1)f(x2),则称函数f(x)在D上为非减函

15、数,设函数f(x)在0,1上为非减函数,且满足以下三个条件:f(0)0;f()f(x);f(1x)1f(x).则f(1)f()f()f()f()f()的值为_.答案解析由f(1x)1f(x),令x0,得f(1)1f(0),因为f(0)0,所以f(1)1.由,令x1,得f()f(1).由,令x,得f()1f(),所以f().再由,令x,得f()f().中再令x,得f()f().又函数f(x)在0,1上为非减函数,0)的图象与x轴有两个不同的交点,若f(c)0,且0x0.(1)证明:是函数f(x)的一个零点;(2)试用反证法证明c.证明(1)f(x)图象与x轴有两个不同的交点,f(x)0有两个不等

16、实根x1,x2,f(c)0,x1c是f(x)0的根,又x1x2,x2(c),是f(x)0的一个根.即是函数f(x)的一个零点.(2)假设0,由0x0,知f()0与f()0矛盾,c,又c,c.6.(2013江苏)设an是首项为a,公差为d的等差数列(d0),Sn是其前n项的和.记bn,nN*,其中c为实数.(1)若c0,且b1,b2,b4成等比数列,证明:Snkn2Sk(k,nN*);(2)若bn是等差数列,证明:c0.证明由题设,Snnad.(1)由c0,得bnad.又因为b1,b2,b4成等比数列,所以bb1b4,即2a,化简得d22ad0.因为d0,所以d2a.因此,对于所有的mN*,有S

17、mma2am2a.从而对于所有的k,nN*,有Snk(nk)2an2k2an2Sk.(2)设数列bn的公差是d1,则bnb1(n1)d1,即b1(n1)d1,nN*,代入Sn的表达式,整理得,对于所有的nN*,有n3n2cd1nc(d1b1).令Ad1d,Bb1d1ad,Dc(d1b1),则对于所有的nN*,有An3Bn2cd1nD.(*)在(*)式中分别取n1,2,3,4,得ABcd18A4B2cd127A9B3cd164A16B4cd1,从而有由,得A0,cd15B,代入方程,得B0,从而cd10.即d1d0,b1d1ad0,cd10.若d10,则由d1d0,得d0,与题设矛盾,所以d10.又因为cd10,所以c0.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3