ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:145.50KB ,
资源ID:549114      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-549114-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2016版《优化方案》高考数学(新课标全国卷Ⅱ·理科)二轮复习特色练习:解答题分层综合练(二) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2016版《优化方案》高考数学(新课标全国卷Ⅱ·理科)二轮复习特色练习:解答题分层综合练(二) WORD版含答案.doc

1、解答题分层综合练(二)中档解答题规范练(2)(建议用时:60分钟)1已知函数f(x)sin2xsin2(x),xR.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值2.如图,在梯形ABCD中,ABCD,ADDCCBa,ABC60,平面ACFE平面ABCD,四边形ACFE是矩形,AEa.(1)求证:BC平面ACFE;(2)求二面角BEFD的余弦值3(2015江西省九江市第一次统考)为了解某地高中生的身高情况,研究小组在该地高中生中随机抽出30名高中生的身高统计成如图所示的茎叶图(单位:cm)1577899916124588991702345566818011247191若身

2、高在175 cm以上(包括175 cm)定义为“高个子”,身高在175 cm以下(不包括175 cm)定义为“非高个子”(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?(2)用样本估计总体,把频率作为概率,若从该地所有高中生(人数很多)中选3人,用表示所选3人中“高个子”的人数,试写出的分布列,并求的数学期望4.如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PDPC4,AB6,BC3.点E是CD边的中点,点F,G分别在线段AB,BC上,且AF2FB,CG2GB.(1)证明:PEFG;(2)求二面角PADC

3、的正切值;(3)求直线PA与直线FG所成角的余弦值5(2015西安模拟)已知函数f(x)m(x1)exx2(mR)(1)若m1,求函数f(x)的单调区间;(2)若对任意的x0,不等式x2(m2)xf(x)恒成立,求m的取值范围6已知数列an的前n项和Snn(n1),且an是bn和1的等差中项(1)求数列an与bn的通项公式;(2)若cn(n2),c1b2,求i;(3)若f(n)(kN*),是否存在nN*,使f(n11)2f(n)?说明理由答案解答题分层综合练(二)1解:(1)由已知,有f(x)cos 2xsin 2xcos 2xsin.所以f(x)的最小正周期T.(2)因为f(x)在区间上是减

4、函数,在区间上是增函数,且f,f,f,所以f(x)在区间上的最大值为,最小值为.2解:(1)证明:在梯形ABCD中,因为ABCD,ADDCCBa,ABC60,所以四边形ABCD是等腰梯形,且DCADAC30,DCB120,所以ACBDCBDCA90,所以ACBC,又平面ACFE平面ABCD,交线为AC,所以BC平面ACFE.(2)由(1)知AC,BC,CF两两垂直,以点C为原点,CA,CB,CF所在直线分别为x,y,z轴建立空间直角坐标系,则C(0,0,0),B(0,a,0),A(a,0,0),D,F(0,0,a),E(a,0,a),则(a,0,0),(a,a,a),.设平面BEF的法向量n1

5、(x,y,z),则即取y1,则n1(0,1,1)设平面EFD的法向量n2(p,q,r),则即取q2,则n2(0,2,1),则cosn1,n2,即二面角BEFD的余弦值为.3解:(1)根据茎叶图,有“高个子”12人,“非高个子”18人,用分层抽样的方法,每个人被抽中的概率是,所以选中的“高个子”有122人,“非高个子”有183人用事件A表示“至少有1名高个子被选中”,则它的对立事件A表示“没有高个子被选中”,则P(A)11.因此,至少有1人是“高个子”的概率是.(2)依题意,抽取的30名学生中有12名是“高个子”,所以抽取1名学生是“高个子”的频率为,频率作为概率,那么从所有高中生中抽取1名学生

6、是“高个子”的概率是,又因为所取总体数量较多,抽取3名学生可看成进行3次独立重复试验,于是,服从二项分布B,的取值为0,1,2,3.P(0)C,P(1)C,P(2)C,P(3)C.因此,的分布列如下:0123P所以E()0123.4解:法一:(1)证明:在PCD中,因为E为CD的中点,且PCPD,所以PECD.又因为平面PCD平面ABCD,且平面PCD平面ABCDCD,PE平面PCD,所以PE平面ABCD.又因为FG平面ABCD,所以PEFG.(2)由(1)知PE平面ABCD,且AD平面ABCD,所以PEAD.又因为四边形ABCD是长方形,所以ADCD.又因为PECD6,所以AD平面PCD,所

7、以ADPD,所以PDE为二面角PADC的平面角因为ABCD6,所以DE3.在RtPED中,PE,所以tanPDE,所求二面角PADC的正切值为.(3)如图,连接AC,在ABC中,因为AF2FB,CG2GB,所以FGAC.由异面直线所成角的定义,知直线PA与直线FG所成角的大小等于PAC的大小在RtPDA中,PA5,AC3,PC4,所以cosPAC,所以直线PA与直线FG所成角的余弦值为.法二:在PCD中,因为E为CD的中点,且PCPD,所以PECD.又因为平面PCD平面ABCD,且平面PCD平面ABCDCD,PE平面PCD,所以PE平面ABCD.取AB的中点H,连接EH.因为四边形ABCD是长

8、方形,所以EHCD.如图,以E为原点,EH,EC,EP所在直线分别为x,y,z轴建立空间直角坐标系,因为PDPC4,AB6,BC3,AF2FB,CG2GB,所以E(0,0,0),P(0,0,),F(3,1,0),G(2,3,0),A(3,3,0),D(0,3,0),C(0,3,0)(1)证明:因为(0,0,),(1,2,0),且(0,0,)(1,2,0)0,所以,即EPFG.(2)因为PE平面ABCD,所以平面ABCD的法向量为(0,0,)设平面ADP的一个法向量为n(x1,y1,z1),(3,3,),(0,3,),由于即令z13,则x10,y1,所以n(0,3)由图可知二面角PADC是锐角,

9、设为,则cos |,所以sin ,tan .(3)因为(3,3,),(1,2,0),设直线AP与直线FG所成角为,则cos |.所以直线PA与FG所成角的余弦值为.5解:(1)m1时,f(x)(1x)exx2,则f(x)x(2ex),由f(x)0,得0xln 2,由f(x)0,得x0或xln 2,故函数的增区间为(0,ln 2),减区间为(,0),(ln 2,)(2)f(x)mxx2(m2)x,即mxexx2mx0.因为x0,所以mexxm0.令h(x)mexxm,则h(x)mex1,当m0时,h(x)在x0时为减函数,h(x)h(0)0.当0m1时,h(x)在x0时为减函数,h(x)h(0)

10、0.当m1时,h(x)在(,ln m)上为减函数,在(ln m,0)上为增函数,所以h(ln m)h(0)0,不合题意综上可知m1.6解:(1)因为Snn(n1),所以a1S10.当n2时,anSnSn1n1,又当n1时,上式也成立,所以ann1,由题意知bn2an1,故bn2n3.(2)因为cn(n2),c1b22231,所以i112.(3)当n2k1(kN*)时,f(n11)2n19,2f(n)2(n1),若f(n11)2f(n),则2n192n2,无解;当n2k(kN*)时,f(n11)n10,2f(n)2(2n3),若f(n11)2f(n),则n104n6,无整数解综上可知,不存在nN*,使f(n11)2f(n)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3