ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:129.44KB ,
资源ID:54078      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-54078-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《创新设计》2016-2017学年高一数学北师大版必修4学案:1.3 弧度制 WORD版含答案.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《创新设计》2016-2017学年高一数学北师大版必修4学案:1.3 弧度制 WORD版含答案.docx

1、3弧度制学习目标1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换.2.体会引入弧度制的必要性,建立角的集合与实数集一一对应关系.3.掌握并能应用弧度制下的弧长公式和扇形面积公式知识链接1初中几何研究过角的度量,当时是用度来做单位度量角的那么1的角是如何定义的?它的大小与它所在圆的大小是否有关?答规定周角的作为1的角;它的大小与它所在圆的大小无关2用度做单位来度量角的制度叫作角度制,在初中有了它就可以计算扇形弧长和面积,其公式是什么?答l,S.预习导引1弧度制(1)弧度制的定义长度等于半径长的弧所对的圆心角叫作1弧度的角,用符号rad表示,读作弧度以弧度作为单位来度量角的单位制叫作弧度

2、制(2)任意角的弧度数与实数的对应关系正角的弧度数是一个正数;负角的弧度数是一个负数;零角的弧度数是零(3)角的弧度数的计算如果半径为r的圆的圆心角所对弧的长为l,那么,角的弧度数的绝对值是|.2角度制与弧度制的换算(1)角度化弧度弧度化角度3602 rad2 rad360180 rad rad1801rad0.01745 rad1 rad57.30(2)一些特殊角的度数与弧度数的对应关系度0130456090120135150180270360弧023.扇形的弧长及面积公式设扇形的半径为R,弧长为l,(02)为其圆心角,则度量单位类别为角度制为弧度制扇形的弧长llR扇形的面积SSlRR2要点

3、一角度制与弧度制的换算例1将下列角度与弧度进行互化(1)20;(2)15;(3);(4).解(1)20.(2)15.(3)180105.(4)180396.规律方法(1)进行角度与弧度换算时,要抓住关系: rad180.(2)熟记特殊角的度数与弧度数的对应值跟踪演练1(1)把11230化成弧度;(2)把化成度解(1)11230.(2)75.要点二用弧度制表示终边相同的角例2把下列各角化成2k (02,kZ)的形式,并指出是第几象限角:(1)1 500;(2);(3)4.解(1)1 5001 8003005360300.1 500可化成10,是第四象限角(2)2,与终边相同,是第四象限角(3)4

4、2(24),24.4与24终边相同,是第二象限角规律方法用弧度制表示终边相同的角2k(kZ)时,其中2k是的偶数倍,而不是整数倍,还要注意角度制与弧度制不能混用跟踪演练2设1570,2750,1,2.(1)将1,2用弧度制表示出来,并指出它们各自的终边所在的象限;(2)将1,2用角度制表示出来,并在7200范围内找出与它们终边相同的所有角解(1)180 rad,157022,275022.1的终边在第二象限,2的终边在第一象限(2)1180108,设108k360(kZ),则由7200,即720108k3600,得k2,或k1.故在7200范围内,与1终边相同的角是612和252.260,设6

5、0k360(kZ),则由72060k3600,la2r0,0r,则解得,.4把表示成2k(kZ)的形式,使|最小的值是_答案解析22(1).1.角的概念推广后,在弧度制下,角的集合与实数集R之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应2解答角度与弧度的互化问题的关键在于充分利用“180 rad”这一关系式3在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度一、基础达标1300化为弧度是()A BC D答案B2集合A与集合B的关系是()AAB BABCBA

6、 D以上都不对答案A3已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是()A2 Bsin 2C. D2sin 1答案C解析r,l|r.4下列与的终边相同的角的表达式中,正确的是()A2k45(kZ) Bk360(kZ)Ck360315(kZ) Dk(kZ)答案C5已知是第二象限角,且|2|4,则的集合是_答案(1.5,)(0.5,2解析是第二象限角,2k2k,kZ,|2|4,62,当k1时,1.5,当k0时,0.52,当k为其它整数时,满足条件的角不存在6如果一扇形的弧长变为原来的倍,半径变为原来的一半,则该扇形的面积为原扇形面积的_答案解析由于SlR,若ll,RR,则SlRlRS

7、.7用弧度表示终边落在如图所示的阴影部分内(不包括边界)的角的集合解(1)阴影部分内(不包括边界)的角的集合为|2k2k,kZ(2)阴影部分内(不包括边界)的角的集合|kk,kZ二、能力提升8扇形圆心角为,则扇形内切圆的圆面积与扇形面积之比为()A13 B23 C43 D49答案B解析设扇形的半径为R,扇形内切圆半径为r,则Rrr2r3r.S内切r2.S扇形R2R29r2r2.S内切S扇形23.9下列表示中不正确的是()A终边在x轴上的角的集合是|k,kZB终边在y轴上的角的集合是|k,kZC终边在坐标轴上的角的集合是|k,kZD终边在直线yx上的角的集合是|2k,kZ答案D解析终边在直线yx

8、上的角的集合应是|k,kZ10已知集合Ax|2kx2k,kZ,集合Bx|4x4,则AB_.答案4,0,解析如图所示,AB4,0,11用30 cm长的铁丝围成一个扇形,应怎样设计才能使扇形的面积最大?最大面积是多少?解设扇形的圆心角为,半径为r,面积为S,弧长为l,则有l2r30,l302r,从而Slr(302r)rr215r2.当半径r cm时,l30215 cm,扇形面积的最大值是 cm2,这时2 rad.当扇形的圆心角为2rad,半径为cm时,面积最大,为 cm2.12.如图所示,半径为1的圆的圆心位于坐标原点,点P从点A(1,0)出发,依逆时针方向等速沿单位圆周旋转,已知P点在1 s内转过的角度为 (0),经过2 s达到第三象限,经过14 s后又回到了出发点A处,求.解因为0,且2k22k(kZ),则必有k0,于是,又142n(nZ),所以,从而,即n0),当为多少弧度时,该扇形有最大面积?解(1)设弧长为l,弓形面积为S弓,60,R10,lR (cm)S弓S扇S10210sin 10cos50 (cm2)(2)扇形周长c2Rl2RR,S扇R2R2(c2R)RR2cR2.当且仅当R,即2 rad时,扇形面积最大,且最大面积是.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3