收藏 分享(赏)

北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc

上传人:高**** 文档编号:534373 上传时间:2024-05-28 格式:DOC 页数:23 大小:535.50KB
下载 相关 举报
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第1页
第1页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第2页
第2页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第3页
第3页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第4页
第4页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第5页
第5页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第6页
第6页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第7页
第7页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第8页
第8页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第9页
第9页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第10页
第10页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第11页
第11页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第12页
第12页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第13页
第13页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第14页
第14页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第15页
第15页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第16页
第16页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第17页
第17页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第18页
第18页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第19页
第19页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第20页
第20页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第21页
第21页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第22页
第22页 / 共23页
北京市石景山区2017届高三上学期期末数学试卷(理科) WORD版含解析.doc_第23页
第23页 / 共23页
亲,该文档总共23页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2016-2017学年北京市石景山区高三(上)期末数学试卷(理科)一、选择题共8小题,每小题5分,共40分在每小题列出的四个选项中,选出符合题目要求的一项1已知集合A=2,1,0,1,2,B=x|0x1,那么AB等于()A0B1C0,1D0,12若,则|z|=()A2B3C4D53执行如图所示的程序框图,输出的k值是()A5B3C9D74下列函数中既是奇函数又在区间(0,+)上单调递减的是()Ay=exBy=ln(x)Cy=x3D5由直线xy+1=0,x+y5=0和x1=0所围成的三角形区域(包括边界)用不等式组可表示为()ABCD6一个几何体的三视图如图所示已知这个几何体的体积为8,则h=(

2、)A1B2C3D67将函数y=(x3)2图象上的点P(t,(t3)2)向左平移m(m0)个单位长度得到点Q若Q位于函数y=x2的图象上,则以下说法正确的是()A当t=2时,m的最小值为3B当t=3时,m一定为3C当t=4时,m的最大值为3DtR,m一定为38六名同学A、B、C、D、E、F举行象棋比赛,采取单循环赛制,即参加比赛的每两个人之间仅赛一局第一天,A、B各参加了3局比赛,C、D各参加了4局比赛,E参加了2局比赛,且A与C没有比赛过,B与D也没有比赛过那么F在第一天参加的比赛局数为()A1B2C3D4二、填空题共6小题,每小题5分,共30分9在(x3)7的展开式中,x5的系数是(结果用数

3、值表示)10已知ABC中,AB=,BC=1,sinC=cosC,则ABC的面积为11若双曲线的渐近线方程为,则双曲线的焦点坐标是 12等差数列an中,a1=2,公差不为零,且a1,a3,a11恰好是某等比数列的前三项,那么该等比数列公比的值等于13有以下4个条件:;|=|;与的方向相反;与都是单位向量其中的充分不必要条件有(填正确的序号)14已知函数,方程f(x)=x有个根;若方程f(x)=ax恰有两个不同实数根,则实数a的取值范围是三、解答题共6小题,共80分解答应写出文字说明,演算步骤或证明过程15已知函数cos2x()求f(x)的最小正周期;()求f(x)在上的最大值162016年微信用

4、户数量统计显示,微信注册用户数量已经突破9.27亿微信用户平均年龄只有26岁,97.7%的用户在50岁以下,86.2%的用户在1836岁之间为调查大学生这个微信用户群体中每人拥有微信群的数量,现从北京市大学生中随机抽取100位同学进行了抽样调查,结果如下:微信群数量频数频率0至5个006至10个300.311至15个300.316至20个ac20个以上5b合计1001()求a,b,c的值;()若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过15个的概率;()以这100个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超

5、过15个的人数,求X的分布列和数学期望EX17如图1,等腰梯形BCDP中,BCPD,BAPD于点A,PD=3BC,且AB=BC=1沿AB把PAB折起到PAB的位置(如图2),使PAD=90()求证:CD平面PAC;()求二面角APDC的余弦值;()线段PA上是否存在点M,使得BM平面PCD若存在,指出点M的位置并证明;若不存在,请说明理由18已知椭圆的离心率为,点(2,0)在椭圆C上()求椭圆C的标准方程;()过点P(1,0)的直线(不与坐标轴垂直)与椭圆交于A、B两点,设点B关于x轴的对称点为B直线AB与x轴的交点Q是否为定点?请说明理由19已知函数,g(x)=x2eax(a0)()求函数f

6、(x)的单调区间;()若对任意x1,x20,2,f(x1)g(x2)恒成立,求a的取值范围20集合M的若干个子集的集合称为集合M的一个子集族对于集合1,2,3n的一个子集族D满足如下条件:若AD,BA,则BD,则称子集族D是“向下封闭”的()写出一个含有集合1,2的“向下封闭”的子集族D并计算此时的值(其中|A|表示集合A中元素的个数,约定|=0;表示对子集族D中所有成员A求和);()D是集合1,2,3n的任一“向下封闭的”子集族,对AD,记k=max|A|,(其中max表示最大值),()求f(2);()若k是偶数,求f(k)2016-2017学年北京市石景山区高三(上)期末数学试卷(理科)参

7、考答案与试题解析一、选择题共8小题,每小题5分,共40分在每小题列出的四个选项中,选出符合题目要求的一项1已知集合A=2,1,0,1,2,B=x|0x1,那么AB等于()A0B1C0,1D0,1【考点】交集及其运算【分析】由A与B,求出两集合的交集即可【解答】解:A=2,1,0,1,2,B=x|0x1,AB=0,1,故选:C2若,则|z|=()A2B3C4D5【考点】复数代数形式的乘除运算【分析】直接利用复数代数形式的乘除运算化简复数z,再由复数求模公式计算得答案【解答】解: =,则|z|=故选:D3执行如图所示的程序框图,输出的k值是()A5B3C9D7【考点】程序框图【分析】模拟程序的运行

8、,依次写出每次循环得到的k,a,b的值,可得当a=32,b=25时满足条件ab,退出循环,输出k的值为5【解答】解:模拟程序的运行,可得k=1,k=3,a=8,b=9不满足条件ab,执行循环体,k=5,a=32,b=25满足条件ab,退出循环,输出k的值为5故选:A4下列函数中既是奇函数又在区间(0,+)上单调递减的是()Ay=exBy=ln(x)Cy=x3D【考点】函数单调性的判断与证明;函数奇偶性的判断【分析】对选项根据函数的奇偶性和单调性,一一加以判断,即可得到既是奇函数,又在(0,+)上单调递减的函数【解答】解:由于函数y=ex是减函数,但不是奇函数,故不满足条件由于函数y=ln(x)

9、不是奇函数,在(0,+)上单调递减,故不满足条件由于函数y=x3是奇函数,且在(0,+)上单调递增,故不满足条件由于函数 y=是奇函数,且在(0,+)上单调递减,故满足条件,故选D5由直线xy+1=0,x+y5=0和x1=0所围成的三角形区域(包括边界)用不等式组可表示为()ABCD【考点】简单线性规划【分析】作出对应的平面区域,根据二元一次不等式组与平面之间的关系即可得到结论【解答】解:作出对应的平面区域,则三角形区域在直线x=1的右侧,x1,在xy+1=0的上方,则xy+10,在x+y5=0的下方,则x+y50,则用不等式组表示为,故选:A6一个几何体的三视图如图所示已知这个几何体的体积为

10、8,则h=()A1B2C3D6【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积【分析】由已知中的三视图可得该几何体是一个以俯视图为底面的四棱锥,代入棱锥体积公式,可构造关于h的方程,解得答案【解答】解:由已知中的三视图可得该几何体是一个以俯视图为底面的四棱锥,其底面是一个长,宽分别为3,4的矩形,故底面面积S=34=12,高为h,故这个几何体的体积为V=12h=8,解得:h=2,故选:B7将函数y=(x3)2图象上的点P(t,(t3)2)向左平移m(m0)个单位长度得到点Q若Q位于函数y=x2的图象上,则以下说法正确的是()A当t=2时,m的最小值为3B当t=3时,m一定为3C当t=4时,

11、m的最大值为3DtR,m一定为3【考点】函数的图象与图象变化【分析】函数y=(x3)2图象上,向左平移3个单位得到函数y=x2的图象,即可得出结论【解答】解:函数y=(x3)2图象上,向左平移3个单位得到函数y=x2的图象,tR,m一定为3,故选D8六名同学A、B、C、D、E、F举行象棋比赛,采取单循环赛制,即参加比赛的每两个人之间仅赛一局第一天,A、B各参加了3局比赛,C、D各参加了4局比赛,E参加了2局比赛,且A与C没有比赛过,B与D也没有比赛过那么F在第一天参加的比赛局数为()A1B2C3D4【考点】排列、组合及简单计数问题【分析】从A、B各参加了3局比赛,C、D各参加了4局比赛,E参加

12、了2局比赛,且A与C没有比赛过,B与D也没有比赛过这个已知条件入手,进而可一步一步推得每个人分别与那几个人下了几局,最后即可得出F最终下了几局【解答】解:由于A、B各参加了3局比赛,C、D各参加了4局比赛,E参加了2局比赛,且A与C没有比赛过,B与D也没有比赛过,所以与D赛过的是A、C、E、F四人;与C赛过的是B、D、E、F四人;又因为E只赛了两局,A与B各赛了3局,所以与A赛过的是D、B、F;而与B赛过的是A、C、F;所以F共赛了4局故选D二、填空题共6小题,每小题5分,共30分9在(x3)7的展开式中,x5的系数是189(结果用数值表示)【考点】二项式系数的性质【分析】利用二项式定理展开式

13、的通项公式,使得x的次数为5,然后求出x5项的系数【解答】解:因为(x3)7的展开式的通项公式为:Tr+1=C7rx7r(3)r,当r=2时,T3=C72x5(3)2=189x5所以(x3)7的展开式中,x5项的系数为:189故答案为:18910已知ABC中,AB=,BC=1,sinC=cosC,则ABC的面积为【考点】正弦定理;三角形的面积公式【分析】由已知及tanC=可求tanC,进而可求C,然后由余弦定理可得,可求AC,代入可求【解答】解:sinC=cosC,tanC=C(0,)AB=,BC=1,由余弦定理可得, =AC=2, =故答案为:11若双曲线的渐近线方程为,则双曲线的焦点坐标是

14、 【考点】双曲线的简单性质【分析】由题意知,m=3由此可以求出双曲线的焦点坐标【解答】解:由题意知,m=3c2=4+3=7,双曲线的焦点坐标是 ()故答案:()12等差数列an中,a1=2,公差不为零,且a1,a3,a11恰好是某等比数列的前三项,那么该等比数列公比的值等于4【考点】等比数列的性质【分析】设a1,a3,a11成等比,公比为q,则可用q分别表示a3和a11,代入a11=a1+5(a3a1)中进而求得q【解答】解:设a1,a3,a11成等比,公比为q,则a3=a1q=2q,a11=a1q2=2q2又an是等差数列,a11=a1+5(a3a1),q=4故答案为413有以下4个条件:;

15、|=|;与的方向相反;与都是单位向量其中的充分不必要条件有(填正确的序号)【考点】必要条件、充分条件与充要条件的判断;平行向量与共线向量【分析】根据共线向量的定义判断即可【解答】解:若=;则,但反之不一定成立,若与的方向相反;则,但反之不一定成立,由此知 为的充分不必要条件;故答案为:14已知函数,方程f(x)=x有1个根;若方程f(x)=ax恰有两个不同实数根,则实数a的取值范围是【考点】利用导数研究曲线上某点切线方程;根的存在性及根的个数判断【分析】画出函数的图形,即可得到解的个数;由题意,方程f(x)=ax恰有两个不同实数根,等价于y=f(x)与y=ax有2个交点,又a表示直线y=ax的

16、斜率,求出a的取值范围【解答】解:函数,与y=x的图象如图:可知方程f(x)=x有1个根函数,方程f(x)=ax恰有两个不同实数根,y=f(x)与y=ax有2个交点,又a表示直线y=ax的斜率,y=,设切点为(x0,y0),k=,切线方程为yy0=(xx0),而切线过原点,y0=1,x0=e,k=,直线l1的斜率为,又直线l2与y=x+1平行,直线l2的斜率为,实数a的取值范围是,)故答案为:1,三、解答题共6小题,共80分解答应写出文字说明,演算步骤或证明过程15已知函数cos2x()求f(x)的最小正周期;()求f(x)在上的最大值【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法

17、【分析】(1)根据三角函数的辅助角公式进行化简结合三角函数的性质进行求解即可(2)求出角的范围结合三角函数的单调性和最值之间的关系进行求解即可【解答】解:()=,因此f(x)的最小正周期为()当时,当,有最大值1即时,f(x)的最大值为2162016年微信用户数量统计显示,微信注册用户数量已经突破9.27亿微信用户平均年龄只有26岁,97.7%的用户在50岁以下,86.2%的用户在1836岁之间为调查大学生这个微信用户群体中每人拥有微信群的数量,现从北京市大学生中随机抽取100位同学进行了抽样调查,结果如下:微信群数量频数频率0至5个006至10个300.311至15个300.316至20个a

18、c20个以上5b合计1001()求a,b,c的值;()若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过15个的概率;()以这100个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望EX【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列【分析】()由频率分布列的性质及,能求出a,b,c的值()记“2人中恰有1人微信群个数超过15个”为事件A,利用等可能事件概率计算公式能求出2人中恰有1人微信群个数超过15个的概率()依题意可知,微信群

19、个数超过15个的概率为X的所有可能取值0,1,2,3,由此能求出X的分布列和数学期望EX【解答】(本小题共13分)解:()由已知得:0+30+30+a+5=100,解得a=35,()记“2人中恰有1人微信群个数超过15个”为事件A,则所以,2人中恰有1人微信群个数超过15个的概率为()依题意可知,微信群个数超过15个的概率为X的所有可能取值0,1,2,3则,其分布列如下:X0123P所以,17如图1,等腰梯形BCDP中,BCPD,BAPD于点A,PD=3BC,且AB=BC=1沿AB把PAB折起到PAB的位置(如图2),使PAD=90()求证:CD平面PAC;()求二面角APDC的余弦值;()线

20、段PA上是否存在点M,使得BM平面PCD若存在,指出点M的位置并证明;若不存在,请说明理由【考点】二面角的平面角及求法;直线与平面垂直的判定【分析】()推导出PAAD,ABAP,从而PA面ABCD,进而PACD,再推导出ACCD,由此能求出CD平面PAC()推导出PA面ABCD,ABAD,从而建立空间直角坐标系,求出平面PAD的法向量和平面PCD的一个法向量,利用向量法能求出二面角APDC的余弦值()设,利用向量法能求出线段PA上存在点M,使得BM平面PCD【解答】(本小题共14分)证明:()因为PAD=90,所以PAAD因为在等腰梯形中,ABAP,所以在四棱锥中,ABAP又ADAB=A,所以

21、PA面ABCD因为CD面ABCD,所以PACD因为等腰梯形BCDE中,ABBC,PD=3BC,且AB=BC=1所以,AD=2所以AC2+CD2=AD2所以ACCD因为PAAC=A,所以CD平面PAC 解:()由()知,PA面ABCD,ABAD,如图,建立空间直角坐标系,A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1)所以,由()知,平面PAD的法向量为,设为平面PCD的一个法向量,则,即,再令y=1,得 =所以二面角APDC的余弦值为 ()线段PA上存在点M,使得BM平面PCD依题意可设,其中01所以M(0,0,),由()知,平面PCD的一个法向量因为B

22、M平面PCD,所以,所以,解得所以,线段PA上存在点M,使得BM平面PCD18已知椭圆的离心率为,点(2,0)在椭圆C上()求椭圆C的标准方程;()过点P(1,0)的直线(不与坐标轴垂直)与椭圆交于A、B两点,设点B关于x轴的对称点为B直线AB与x轴的交点Q是否为定点?请说明理由【考点】椭圆的简单性质【分析】()由点(2,0)在椭圆C上,可得a=2,又,b=,解出即可得出()设A(x1,y1),B(x2,y2),B(x2,y2),Q(n,0)设直线AB:y=k(x1)(k0)与椭圆方程联立得:(1+4k2)x28k2x+4k24=0直线AB的方程为,令y=0,解得n,又y1=k(x11),y2

23、=k(x21),再利用根与系数的关系即可得出【解答】解:()因为点(2,0)在椭圆C上,所以a=2又因为,所以所以所以椭圆C的标准方程为: ()设A(x1,y1),B(x2,y2),B(x2,y2),Q(n,0)设直线AB:y=k(x1)(k0)联立y=k(x1)和x2+4y24=0,得:(1+4k2)x28k2x+4k24=0所以,直线AB的方程为,令y=0,解得又y1=k(x11),y2=k(x21),所以所以直线AB与x轴的交点Q是定点,坐标为Q(4,0)19已知函数,g(x)=x2eax(a0)()求函数f(x)的单调区间;()若对任意x1,x20,2,f(x1)g(x2)恒成立,求a

24、的取值范围【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性【分析】()求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;()问题等价于“对于任意x0,2,f(x)ming(x)max成立”,根据函数的单调性求出a的范围即可【解答】解:()函数f(x)的定义域为R,当x变化时,f(x),f(x)的变化情况如下表:x(,1)(1,1)(1,+)f(x)+f(x)所以,函数f(x)的单调递增区间是(1,1),单调递减区间是(,1),(1,+)()依题意,“对于任意x1,x20,2,f(x1)g(x2)恒成立”等价于“对于任意x0,2,f(x)ming(x)max成立”由()

25、知,函数f(x)在0,1上单调递增,在1,2上单调递减,因为f(0)=1,所以函数f(x)的最小值为f(0)=1所以应满足g(x)max1因为g(x)=x2eax,所以g(x)=(ax2+2x)eax因为a0,令g(x)=0得,x1=0,()当,即1a0时,在0,2上g(x)0,所以函数g(x)在0,2上单调递增,所以函数由4e2a1得,aln2,所以1aln2 ()当,即a1时,在上g(x)0,在上g(x)0,所以函数g(x)在上单调递增,在上单调递减,所以由得,所以a1 综上所述,a的取值范围是(,ln2 20集合M的若干个子集的集合称为集合M的一个子集族对于集合1,2,3n的一个子集族D

26、满足如下条件:若AD,BA,则BD,则称子集族D是“向下封闭”的()写出一个含有集合1,2的“向下封闭”的子集族D并计算此时的值(其中|A|表示集合A中元素的个数,约定|=0;表示对子集族D中所有成员A求和);()D是集合1,2,3n的任一“向下封闭的”子集族,对AD,记k=max|A|,(其中max表示最大值),()求f(2);()若k是偶数,求f(k)【考点】子集与真子集【分析】()求出含有集合1,2的“向下封闭”的子集族D,并计算此时的值;()设1,2,3n的所有不超过k个元素的子集族为Dk,()易知当D=D2时,达到最大值,求出f(2)的值即可;()设D是使得k=max|A|的任一个“

27、向下封闭”的子集族,记D=DD,其中D为不超过k2元的子集族,D为k1元或k元的子集,则求出,设D有l()个1,2,3n的k元子集,由于一个k1元子集至多出现在nk+1个1,2,3n的k元子集中,而一个k元子集中有个k1元子集,故l个k元子集至少产生个不同的k1元子集,求出f(k)即可【解答】解:()含有集合1,2的“向下封闭”的子集族D=,1,2,1,2此时()设1,2,3n的所有不超过k个元素的子集族为Dk,()易知当D=D2时,达到最大值,()设D是使得k=max|A|的任一个“向下封闭”的子集族,记D=DD,其中D为不超过k2元的子集族,D为k1元或k元的子集,则=8 分现设D有l()个1,2,3n的k元子集,由于一个k1元子集至多出现在nk+1个1,2,3n的k元子集中,而一个k元子集中有个k1元子集,故l个k元子集至少产生个不同的k1元子集 由()得2017年2月10日

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3