ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:973KB ,
资源ID:533773      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-533773-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《步步高》2015届高考数学(理科广东)二轮专题复习配套WORD版训练:专题三 第1讲 三角函数的图象与性质.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《步步高》2015届高考数学(理科广东)二轮专题复习配套WORD版训练:专题三 第1讲 三角函数的图象与性质.doc

1、第1讲三角函数的图象与性质考情解读1.以图象为载体,考查三角函数的最值、单调性、对称性、周期性.2.考查三角函数式的化简、三角函数的图象和性质、角的求值,重点考查分析、处理问题的能力,是高考的必考点1三角函数定义、同角关系与诱导公式(1)定义:设是一个任意角,它的终边与单位圆交于点P(x,y),则sin y,cos x,tan .各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦(2)同角关系:sin2cos21,tan .(3)诱导公式:在,kZ的诱导公式中“奇变偶不变,符号看象限”2三角函数的图象及常用性质函数ysin xycos xytan x图象单调性在2k,2k(kZ)上单调

2、递增;在2k,2k(kZ)上单调递减在2k,2k(kZ)上单调递增;在2k,2k(kZ)上单调递减在(k,k)(kZ)上单调递增对称性对称中心:(k,0)(kZ);对称轴:xk(kZ)对称中心:(k,0)(kZ);对称轴:xk(kZ)对称中心:(,0)(kZ)3.三角函数的两种常见变换(1)ysin xysin(x) ysin(x)yAsin(x)(A0,0)(2)ysin xysin xysin(x)yAsin(x)(A0,0)热点一三角函数的概念、诱导公式及同角三角函数的基本关系例1(1)点P从(1,0)出发,沿单位圆x2y21逆时针方向运动弧长到达Q点,则Q点的坐标为()A(,) B(,

3、)C(,) D(,)(2)已知角的顶点与原点重合,始边与x轴的正半轴重合,终边上一点P(4,3),则的值为_思维启迪(1)准确把握三角函数的定义(2)利用三角函数定义和诱导公式答案(1)A(2)解析(1)设Q点的坐标为(x,y),则xcos,ysin.Q点的坐标为(,)(2)原式tan .根据三角函数的定义,得tan ,原式.思维升华(1)涉及与圆及角有关的函数建模问题(如钟表、摩天轮、水车等),常常借助三角函数的定义求解应用定义时,注意三角函数值仅与终边位置有关,与终边上点的位置无关(2)应用诱导公式时要弄清三角函数在各个象限内的符号;利用同角三角函数的关系化简过程要遵循一定的原则,如切化弦

4、、化异为同、化高为低、化繁为简等(1)如图,以Ox为始边作角(00,cos 0,0,|)的部分图象如图所示,则将yf(x)的图象向右平移个单位后,得到的图象解析式为()Aysin 2x Bycos 2xCysin(2x) Dysin(2x)(2)若函数ycos 2xsin 2xa在0,上有两个不同的零点,则实数a的取值范围为_思维启迪(1)先根据图象确定函数f(x)的解析式,再将得到的f(x)中的“x”换成“x”即可(2)将零点个数转换成函数图象的交点个数答案(1)D(2)(2,1解析(1)由图知,A1,故T,所以2,又函数图象过点(,1),代入解析式中,得sin()1,又|,故.则f(x)s

5、in(2x)向右平移后,得到ysin2(x)sin(2x),选D.(2)由题意可知y2sin(2x)a,该函数在0,上有两个不同的零点,即ya,y2sin(2x)在0,上有两个不同的交点结合函数的图象可知1a2,所以20,0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A;由函数的周期确定;确定常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置(2)在图象变换过程中务必分清是先相位变换,还是先周期变换变换只是相对于其中的自变量x而言的,如果x的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向(1)如图,函数f(

6、x)Asin(x)(其中A0,0,|)与坐标轴的三个交点P、Q、R满足P(2,0),PQR,M为QR的中点,PM2,则A的值为()A. B.C8 D16(2)若将函数ytan(x)(0)的图象向右平移个单位长度后,与函数ytan(x)的图象重合,则的最小正值为()A. B.C. D.答案(1)B(2)D解析(1)由题意设Q(a,0),R(0,a)(a0)则M(,),由两点间距离公式得,PM 2,解得a8,由此得,826,即T12,故,由P(2,0)得,代入f(x)Asin(x)得,f(x)Asin(x),从而f(0)Asin()8,得A.(2)ytan(x)的图象向右平移,得到ytan(x)的

7、图象,与ytan(x)重合,得k,故6k,kZ,的最小正值为.热点三三角函数的性质例3设函数f(x)2cos2xsin 2xa(aR)(1)求函数f(x)的最小正周期和单调递增区间;(2)当x0,时,f(x)的最大值为2,求a的值,并求出yf(x)(xR)的对称轴方程思维启迪先化简函数解析式,然后研究函数性质(可结合函数简图)解(1)f(x)2cos2xsin 2xa1cos 2xsin 2xasin(2x)1a,则f(x)的最小正周期T,且当2k2x2k(kZ)时f(x)单调递增,即kxk(kZ)所以k,k(kZ)为f(x)的单调递增区间(2)当x0,时2x,当2x,即x时sin(2x)1.

8、所以f(x)max1a2a1.由2xk得x(kZ),故yf(x)的对称轴方程为x,kZ.思维升华函数yAsin(x)的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成yAsin(x)B的形式;第二步:把“x”视为一个整体,借助复合函数性质求yAsin(x)B的单调性及奇偶性、最值、对称性等问题已知函数f(x)2sin xcos x2sin2x(0)的最小正周期为.(1)求函数f(x)的单调增区间;(2)将函数f(x)的图象向左平移个单位长度,再向上平移1个单位长度,得到函数yg(x)的图象;若yg(x)在0,b(b0)上至少含有10个零点,求b的最小值解(1)由题

9、意得:f(x)2sin xcos x2sin2xsin 2xcos 2x2sin(2x),由周期为,得1,得f(x)2sin(2x),函数的单调增区间为2k2x2k,kZ,整理得kxk,kZ,所以函数f(x)的单调增区间是k,k,kZ.(2)将函数f(x)的图象向左平移个单位长度,再向上平移1个单位长度,得到y2sin 2x1的图象,所以g(x)2sin 2x1,令g(x)0,得xk或xk(kZ),所以在0,上恰好有两个零点,若yg(x)在0,b上有10个零点,则b不小于第10个零点的横坐标即可,即b的最小值为4.1求函数yAsin(x)(或yAcos(x),或yAtan(x)的单调区间(1)

10、将化为正(2)将x看成一个整体,由三角函数的单调性求解2已知函数yAsin(x)B(A0,0)的图象求解析式(1)A,B.(2)由函数的周期T求,.(3)利用与“五点法”中相对应的特殊点求.3函数yAsin(x)的对称轴一定经过图象的最高点或最低点4求三角函数式最值的方法(1)将三角函数式化为yAsin(x)B的形式,进而结合三角函数的性质求解(2)将三角函数式化为关于sin x,cos x的二次函数的形式,进而借助二次函数的性质求解5特别提醒进行三角函数的图象变换时,要注意无论进行什么样的变换都是变换变量本身真题感悟1(2014辽宁)将函数y3sin(2x)的图象向右平移个单位长度,所得图象

11、对应的函数()A在区间,上单调递减B在区间,上单调递增C在区间,上单调递减D在区间,上单调递增答案B解析y3sin(2x)的图象向右平移个单位长度得到y3sin2(x)3sin(2x)令2k2x2k,kZ,得kxk,kZ,则y3sin(2x)的增区间为k,k,kZ.令k0得其中一个增区间为,故B正确画出y3sin(2x)在,上的简图,如图,可知y3sin(2x)在,上不具有单调性,故C,D错误2(2014北京)设函数f(x)Asin(x)(A,是常数,A0,0)若f(x)在区间上具有单调性,且fff,则f(x)的最小正周期为_答案解析f(x)在上具有单调性,T.ff,f(x)的一条对称轴为x.

12、又ff,f(x)的一个对称中心的横坐标为.T,T.押题精练1函数f(x)2sin(x)(0)的部分图象如图,其中M(m,0),N(n,2),P(,0),且mn0,则f(x)在下列哪个区间中是单调的()A(0,) B(,)C(,) D(,)答案B解析mn0),直线xx1,xx2是yf(x)图象的任意两条对称轴,且|x1x2|的最小值为.(1)求f(x)的表达式;(2)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数yg(x)的图象,若关于x的方程g(x)k0在区间0,上有且只有一个实数解,求实数k的取值范围解(1)f(x)sin 2xs

13、in 2xcos 2xsin(2x),由题意知,最小正周期T2,T,所以2,f(x)sin.(2)将f(x)的图象向右平移个单位长度后,得到ysin(4x)的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到ysin(2x)的图象所以g(x)sin(2x)令2xt,0x,t.g(x)k0在区间0,上有且只有一个实数解,即函数g(t)sin t与yk在区间,上有且只有一个交点如图,由正弦函数的图象可知k或k1.0且|)在区间,上单调递减,且函数值从1减小到1,那么此函数图象与y轴交点的纵坐标为()A. B.C. D.答案A解析依题意知,T,2,将点(,1)代入ysin(2x)得s

14、in()1,又|0,0,|)在一个周期内的图象如图所示,M,N分别是这段图象的最高点与最低点,且0,则A等于()A. B. C. D.答案C解析由题中图象知,所以T,所以2.则M,N由0,得A2,所以A,所以A.5已知函数f(x)sin(2x),其中|,若f(x)|f()|对xR恒成立,且f()f()Cf(x)是奇函数Df(x)的单调递增区间是k,k(kZ)答案D解析由f(x)|f()|恒成立知x是函数的对称轴,即2k,kZ,所以k,kZ,又f()f(),所以sin()sin(2),即sin 0,得,即f(x)sin(2x),由2k2x2k,kZ,得kxk,kZ,即函数的单调递增区间是k,k(

15、kZ)6已知A,B,C,D,E是函数ysin(x)(0,00,0)一个周期内的图象上的五个点,A(,0),B为y轴上的点,C为图象上的最低点,E为该函数图象的一个对称中心,B与D关于点E对称,在x轴上的投影为,所以T4(),所以2,因为A(,0),所以f()sin()0,00,0,|0)和g(x)3cos(2x)的图象的对称中心完全相同,若x0,则f(x)的取值范围是_答案,3解析由两三角函数图象的对称中心完全相同,可知两函数的周期相同,故2,所以f(x)3sin(2x),那么当x0,时,2x,所以sin(2x)1,故f(x),310给出命题:函数y2sin(x)cos(x)(xR)的最小值等

16、于1;函数ysin xcos x是最小正周期为2的奇函数;函数ysin(x)在区间0,上单调递增的;若sin 20,cos sin 0,则一定为第二象限角则真命题的序号是_答案解析对于,函数y2sin(x)cos(x)sin(x),所以其最小值为1;对于,函数ysin xcos xsin 2x是奇函数,但其最小正周期为1;对于,函数ysin(x)在区间0,上单调递增,在区间,上单调递减;对于,由cos 0,所以一定为第二象限角三、解答题11已知函数f(x)Asin(3x)(A0,x(,),0)在x时取得最大值4.(1)求f(x)的最小正周期;(2)求f(x)的解析式;(3)若f(),求sin

17、.解(1)f(x)的最小正周期T.(2)由函数的最大值为4,可得A4.所以f(x)4sin(3x)当x时,4sin(3)4,所以sin()1,所以2k,kZ,因为0,所以.所以f(x)的解析式是f(x)4sin(3x)(3)因为f(),故sin(2).所以cos 2,即12sin2,故sin2.所以sin .12已知函数f(x)sin2x2sin xcos x3cos2x,xR.求:(1)函数f(x)的最小正周期和单调递增区间;(2)函数f(x)在区间,上的值域解(1)由二倍角的正、余弦公式及其变形,得f(x)sin 2x2sin 2xcos 2x22(sin 2xcos 2x)2sin(2x)2.函数f(x)的最小正周期T,2k2x2k,kZ,即kxk,kZ时f(x)为单调递增函数,f(x)的单调递增区间为k,k,kZ.(2)由题意得x,2x,sin(2x),1,即12sin(2x)24,f(x)区间,上的值域为1,4

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3