ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:220.50KB ,
资源ID:532713      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-532713-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学北师大版选修2-2例题与探究 第五章2.2复数的乘法与除法 WORD版含解析.DOC)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

数学北师大版选修2-2例题与探究 第五章2.2复数的乘法与除法 WORD版含解析.DOC

1、高考资源网() 您身边的高考专家高手支招3综合探究 进行复数的除法运算的步骤 利用复数的除法定义:把满足(c+di)(x+yi)=(a+bi)(c+di0)的复数 x+yi叫做复数a+bi除以复数c+di的商,记作(a+bi)(c+di)或,从而利用复数相等求得x,y的值即可.(c+di)(x+yi)=(cx-dy)+(dx+cy)i,(cx-dy)+(dx+cy)i=a+bi,由此可得解这个方程组得于是有(a+bi)(c+di)=.在进行复数除法运算时,通常先把(a+bi)(c+di)写成的形式,再把分子与分母都乘以分母的共轭复数c-di,化简后,也可以得出上面的结果.高手支招4典例精析【例

2、1】 (2006浙江高考,理2) 已知=1-ni,其中m、n是实数,i是虚数单位,则m+ni=( )A.1+2i B.1-2i C.2+i D.2-i思路分析:可先将=1-ni去分母后展开化简,再利用复数相等解之.本题也可将等式左边分母实数化,再利用复数相等解之.将=1-ni两边同乘以1+i,得m=(1-ni)(1+i)=1+n+(1-n)i,由复数相等法则,得从而所以m+ni=2+i.答案:C【例2】 (2005高考全国,理1) 复数=( )A.i B.-I C.2-I D.-2+i思路分析:此题可以直接进行分母“有理化”(即分子分母同乘以分母的共轭复数),化简解得,或由观察得出:将分子化简

3、后,分母乘以i则可以得到分子,从而解得.原式=.答案:A【例3】 若复数z=+i,则1+z+z2+z3+z2 006( )A.0 B.+i C.-i D.-i思路分析:由于z=+i正好是的一个值,故具有特性,即1+z+z2=0,利用此式,原式即可化简.1+z+z2+z3+z2 006中连续三项的和均为零,由于1+z+z2+z3+z2 006的项数2 007项正好是3的倍数项,故所求的和式为零.答案:A【例4】 (2006高考全国,理4) 如果复数(m2+i)(1+mi)是实数,则实数m等于( )A.1 B.-1 C. D.-思路分析:要使一个复数为实数,那只需要一个条件:虚部为0.将原式(m2

4、+i)(1+mi)展开,得m2+m3i+i+mi2=(m2-m)+(m3+1)i,令其虚部为零,即m3+1=0,即m=-1.答案:B【例5】 (2007广东高考,理2文2) 若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b是实数),则b等于( )A.-2 B. C. D.2思路分析:(1+bi)(2+i)=(2-b)+(2b+1)i,依题意2-b=0b=2.答案:D【例6】 (2007全国高考,理2) 设a是实数,且是实数,则a等于( )A. B.1 C. D.2思路分析:先化简,因为是实数,故其虚部为零,即=0,从而得a=1.答案:B【例7】 (2007高考全国,理3) 设复数z满足=

5、i,则z等于 ( )A.-2+i B.-2-I C.2-I D.2+i思路分析:由=i,得z=2-i.答案:C【例8】 (2006湖北高考,理11) 设x、y为实数,且,则x+y=_.思路分析:先将原式两边的分母实数化,然后再利用复数相等即可求得x+y的值.将原式分母实数化,得(1+i)+(1+2i)=(1+3i),即5x(1+i)+2y(1+2i)=5(1+3i),即(5x+2y-5)+(5x+4y-15)i=0,利用复数相等的充要条件得x+y=4.答案:4【例9】 计算下列各式:(1)i2 006+(+i)8-()50;(2)(i)6.思路分析:(1)充分利用(1i)2=2i及i4n+k=

6、ik将高次冥化为低次冥.(2)利用的性质解答.解:(1)i2 006+(+i)8-()50=i4501+2+2(1+i)24-25=i2+(4i)4-()25=-1+256-i25=255-i;(2)=+i,-i=-,(-i)6=(-)6=(3)2=1.【例10】 已知复数z=,若z2+az+b=1+i,试求实数a、b的值.思路分析:要求实数a、b的值,需先确定复数z的值,而要确定复数z,需对复数z进行化简,主要通过复数乘方,加减运算,最后通过分母实数化,从而化得结果.解:z=1+i,z2+az+b=(1+i)2+a(1+i)+b=(a+b)+(2+a)i,由已知z2+az+b=1+i,实数a

7、、b的值分别为-1,2.【例11】 已知f(z)=2z+-3i,f(z+i)=6-3i,求f(-z)的值.思路分析:需要先利用已知式求出z,再将-z代入f(z)=2z+-3i中计算.解:f(z)=2z+-3i,f(+i)=2(+i)+-3i=2+2i+z-i-3i=2+z-2i,又知f(+i)=6-3i,2+z-2i=6-3i,即2+z=6-i,设z=a+bi,则=a-bi,于是有2(a-bi)+a+bi=6-i,所以,解得a=2,b=1,z=2+i,f(-z)=f(-2-i)=2(-2-i)+(-2+i)-3i=-6-4i.【例12】 计算:(i)12+()8.思路分析: i=i(+i),1

8、-i=(-2)(+i),由此,原式可以化简.解:原式=i12(+i)12+=11+=1+16(+i)=-7+8i.【例13】 已知复数z1=i(1-i)3.(1)求|z1|;(2)若|z|=1,求|z-z1|的最大值.思路分析:(1)求模应求出复数的实部与虚部,再利用|a+bi|= 得出.(2)是考查复数几何意义的应用.解:(1)z1=i(1-i)3i(-2i)(1-i)=2(1-i),|z1|.(2)|z|=1可看成半径为1、圆心为(,)的圆,而点Z1可看成在坐标系中的点(2,-2),|z-z1|的最大值可以看成点(2,-2)到圆上点距离的最大值,由右图可知|z-z1|max=2+1.【例1

9、4】 (2005上海春季高考,理18) 证明:在复数范围内,方程|z|2+(1-i)-(1+i)z=(i为虚数单位)无解.思路分析:将已知条件化简后再由复数相等来解.证明:原方程化简为|z|2+(1-i)z-(1+i)z=1-3i.设z=x+yi(x、yR),代入上述方程得x2+y2-2xi-2yi=1-3i.将(2)代入(1),整理得8x2-12x+5=0.=-160,方程f(x)无实数解,原方程在复数范围内无解.高手支招5思考发现1.利用某些特殊复数的运算结果,如(1i)2=2i,(i)3=1,=-i,=i,=-i,i的幂的周期性,对于简化复数的运算大有好处,在计算上经常用的结论最好能熟记,以便加快解题速度.2.在化简运算中,要注意运用i、的性质,如当=+i时有:=2,3=1,=,n+n+1+n+2=0(nN*),in+in+1+in+2+in+3=0(nN*3.在解题过程中,若能充分利用共轭复数的性质对问题进行等价变形、化简,可使复杂问题简单化,事半功倍.高考资源网版权所有,侵权必究!

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1