ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:35.21KB ,
资源ID:517587      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-517587-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022年高考数学一轮复习 考点规范练49 椭圆(含解析)新人教A版(理).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022年高考数学一轮复习 考点规范练49 椭圆(含解析)新人教A版(理).docx

1、考点规范练49椭圆基础巩固1.已知椭圆的焦点坐标为(-5,0)和(5,0),椭圆上一点与两焦点的距离和是26,则椭圆的方程为()A.x2169+y2144=1B.x2144+y2169=1C.x2169+y225=1D.x2144+y225=1答案:A解析:由题意知a=13,c=5,则b2=a2-c2=144.又椭圆的焦点在x轴上,椭圆方程为x2169+y2144=1.2.已知椭圆x29+y24+k=1的离心率为45,则k的值为()A.-1925B.21C.-1925或21D.1925或21答案:C解析:若a2=9,b2=4+k,则c=5-k,由ca=45,即5-k3=45,得k=-1925;

2、若a2=4+k,b2=9,则c=k-5,由ca=45,即k-54+k=45,解得k=21.3.若曲线ax2+by2=1是焦点在x轴上的椭圆,则实数a,b满足()A.a2b2B.1a1bC.0abD.0b1b0,所以0a|MN|,由椭圆定义知,动点P的轨迹是椭圆.6.已知F1,F2是椭圆x2a2+y2b2=1(ab0)的左、右两个焦点,若椭圆上存在点P使得PF1PF2,则该椭圆的离心率的取值范围是()A.55,1B.22,1C.0,55D.0,22答案:B解析:F1,F2是椭圆x2a2+y2b2=1(ab0)的左、右两个焦点,离心率0e1,F1(-c,0),F2(c,0),c2=a2-b2.设点

3、P(x,y),由PF1PF2,得(x-c,y)(x+c,y)=0,化简得x2+y2=c2,联立方程组x2+y2=c2,x2a2+y2b2=1,整理,得x2=(2c2-a2)a2c20,解得e22,又0e1,22e0,y00),则SMF1F2=12|F1F2|y0=4y0.又SMF1F2=12482-22=415,4y0=415,解得y0=15.又点M在椭圆C上,x0236+(15)220=1,解得x0=3或x0=-3(舍去).点M的坐标为(3,15).8.(2020全国,理20)已知A,B分别为椭圆E:x2a2+y2=1(a1)的左、右顶点,G为E的上顶点,AGGB=8.P为直线x=6上的动点

4、,PA与E的另一交点为C,PB与E的另一交点为D.(1)求椭圆E的方程;(2)证明:直线CD过定点.答案:(1)解由题设得A(-a,0),B(a,0),G(0,1).则AG=(a,1),GB=(a,-1).由AGGB=8得a2-1=8,即a=3.所以椭圆E的方程为x29+y2=1.(2)证明设C(x1,y1),D(x2,y2),P(6,t).若t0,设直线CD的方程为x=my+n,由题意可知-3nb0)的离心率为63,焦距为22.斜率为k的直线l与椭圆M有两个不同的交点A,B.(1)求椭圆M的方程;(2)若k=1,求|AB|的最大值;(3)设P(-2,0),直线PA与椭圆M的另一个交点为C,直

5、线PB与椭圆M的另一个交点为D,若C,D和点Q-74,14共线,求k.解:(1)由题意得a2=b2+c2,ca=63,2c=22,解得a=3,b=1.所以椭圆M的方程为x23+y2=1.(2)设直线l的方程为y=x+m,A(x1,y1),B(x2,y2).由y=x+m,x23+y2=1,得4x2+6mx+3m2-3=0,所以x1+x2=-3m2,x1x2=3m2-34.所以|AB|=(x2-x1)2+(y2-y1)2=2(x2-x1)2=2(x1+x2)2-4x1x2=12-3m22.当m=0,即直线l过原点时,|AB|最大,最大值为6.(3)设A(x1,y1),B(x2,y2),由题意得x1

6、2+3y12=3,x22+3y22=3.直线PA的方程为y=y1x1+2(x+2).由y=y1x1+2(x+2),x2+3y2=3,得(x1+2)2+3y12x2+12y12x+12y12-3(x1+2)2=0.设C(xC,yC),所以xC+x1=-12y12(x1+2)2+3y12=4x12-124x1+7.所以xC=4x12-124x1+7-x1=-12-7x14x1+7.所以yC=y1x1+2(xC+2)=y14x1+7.设D(xD,yD),同理得xD=-12-7x24x2+7,yD=y24x2+7.记直线CQ,DQ的斜率分别为kCQ,kDQ,则kCQ-kDQ=y14x1+7-14-12

7、-7x14x1+7+74-y24x2+7-14-12-7x24x2+7+74=4(y1-y2-x1+x2).因为C,D,Q三点共线,所以kCQ-kDQ=0.故y1-y2=x1-x2.所以直线l的斜率k=y1-y2x1-x2=1.能力提升10.已知P是椭圆x225+y2b2=1(0bb0)的焦点为F1,F2,若椭圆上存在满足PF1PF2=b22的点P,则椭圆的离心率的范围是.答案:33,1解析:椭圆的焦点为F1,F2,椭圆上存在满足PF1PF2=b22的点P,|PF1|PF2|cos=b22,4c2=PF12+PF22-2|PF1|PF2|cos,|PF1|+|PF2|=2a,可得PF12+PF

8、22+2|PF1|PF2|=4a2,4c2=4a2-2|PF1|PF2|-b2.2|PF1|PF2|=3a2-3c22|PF1|+|PF2|22,当且仅当|PF1|=|PF2|时,等号成立.可得c2a213,解得e33.又0e1,e33,1.12.(2020全国,理20)已知椭圆C:x225+y2m2=1(0m0,由题意知yP0.由已知可得B(5,0),直线BP的方程为y=-1yQ(x-5),所以|BP|=yP1+yQ2,|BQ|=1+yQ2.因为|BP|=|BQ|,所以yP=1,将yP=1代入C的方程,解得xP=3或-3.由直线BP的方程得yQ=2或8.所以点P,Q的坐标分别为P1(3,1)

9、,Q1(6,2);P2(-3,1),Q2(6,8).|P1Q1|=10,直线P1Q1的方程为y=13x,点A(-5,0)到直线P1Q1的距离为102,故AP1Q1的面积为1210210=52.|P2Q2|=130,直线P2Q2的方程为y=79x+103,点A到直线P2Q2的距离为13026,故AP2Q2的面积为1213026130=52.综上,APQ的面积为52.高考预测13.椭圆E:x2a2+y2b2=1(ab0)的左、右焦点分别为F1,F2,过F2作垂直于x轴的直线l与椭圆E在第一象限交于点P,若|PF1|=5,且3a=b2.(1)求椭圆E的方程;(2)A,B是椭圆C上位于直线l两侧的两点

10、.若直线AB过点(1,-1),且APF2=BPF2,求直线AB的方程.解:(1)由题意可得|PF2|=b2a=3,因为|PF1|=5,由椭圆的定义得a=4,所以b2=12,故椭圆E的方程为x216+y212=1.(2)易知点P的坐标为(2,3).因为APF2=BPF2,所以直线PA,PB的斜率之和为0.设直线PA的斜率为k,则直线PB的斜率为-k,设A(x1,y1),B(x2,y2),则直线PA的方程为y-3=k(x-2),由y-3=k(x-2),x216+y212=1可得(3+4k2)x2+8k(3-2k)x+4(3-2k)2-48=0,所以x1+2=8k(2k-3)3+4k2,同理直线PB的方程为y-3=-k(x-2),可得x2+2=-8k(-2k-3)3+4k2=8k(2k+3)3+4k2,所以x1+x2=16k2-123+4k2,x1-x2=-48k3+4k2,kAB=y1-y2x1-x2=k(x1-2)+3+k(x2-2)-3x1-x2=k(x1+x2)-4kx1-x2=12,所以满足条件的直线AB的方程为y+1=12(x-1),即为x-2y-3=0.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1