1、课时分层作业(三十)积化和差与和差化积公式(建议用时:40分钟)一、选择题1cos 15 sin 105()ABC1D1Acos 15sin 105sin(15105)sin(15105)sin 120sin(90)1.2sin 20sin 40sin 80的值为()A0B CD1A原式2sin 30cos 10sin 80cos 10sin 80sin 80sin 800.3函数f(x)2sinsin的最大值等于()A2sin2B2sin2C2cos2D2cos2Af(x)2sinsincos cos(x)cos(x)cos .当cos(x)1时,f(x)取得最大值1cos 2sin2.4若
2、cos xcos ysin xsin y,sin 2xsin 2y,则sin(xy)()AB CDA因为cos xcos ysin xsin y,所以cos,因为sin 2xsin 2y,所以2sincos,所以2sin,所以sin(xy),故选A5函数ysincos x的最大值为()AB C1DBysincos xsin. ymax.二、填空题6cos 2cos 3化为积的形式为_2sinsincos 2cos 32sinsin2sinsin2sinsin.7sincos化为和差的结果是_cos()sin()原式cos()sin()8._.原式.三、解答题9求下列各式的值:(1)sin 54
3、sin 18;(2)cos 146cos 942cos 47cos 73.解(1)sin 54sin 182cos 36sin 182.(2)cos 146cos 942cos 47cos 732cos 120cos 262(cos 120cos 26)2cos 26cos 26cos 26cos 26.10在ABC中,若B30,求cos Asin C的取值范围解由题意,得cos Asin Csin(AC)sin(AC)sin(B)sin(AC)sin(AC)B30,150AC150,1sin(AC)1,sin(AC).cos Asin C的取值范围是.11cos 40cos 60cos 80
4、cos 160_.cos 60cos 80cos 40cos 160cos 802cos 100cos 60cos 80cos 80.12已知,且cos cos ,则cos()_.cos cos 2cos cos 2cos cos cos ,cos()2cos2121.13函数ycoscos的最大值是_ycos 2x,因为1cos 2x1,所以ymax.14._.2cos 30.15若sin cos ,cos sin ,求tan 的值解令,则sin sin ,cos cos ,由和差化积公式得,2sin cos ,2cos cos ,两式相除得,tan ,即tan ,tan ,所以,解得tan .