1、小题狂练(1)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,集合,集合,则集合( )A. B. C. D. 【答案】B【解析】,则,故选B.考点:本题主要考查集合的交集与补集运算.2. 命题“,”的否定是( )A. ,B. ,C. ,D. ,【答案】C【解析】试题分析:特称命题的否定是全称命题,并将结论加以否定,所以命题的否定为:,考点:全称命题与特称命题3. 设,则A. B. C. D. 【答案】C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛
2、:复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.4. 二项式的展开式中项的系数为,则( )A. 4B. 5C. 6D. 7【答案】C【解析】二项式的展开式的通项是,令得的系数是,因为的系数为,所以,即,解得:或,因为,所以,故选C【考点定位】二项式定理5. 是边长为1等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为( )A. B. C. D. 【答案】B【解析】试题分析:设,.【考点】
3、向量数量积【名师点睛】研究向量的数量积问题,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言“坐标语言”,实质是将“形”化为“数”向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来6. 直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D. 【答案】A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P圆上圆心为
4、(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题7. 已知函数若g(x)存在2个零点,则a的取值范围是A. 1,0)B. 0,+)C. 1,+)D. 1,+)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时
5、,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.8. 已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,ABC是边长为2的正三角形,E,F分别是PA,AB的中点,CEF=90,则球O的体积为A. B. C. D. 【答案】D【
6、解析】【分析】先证得平面,再求得,从而得为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】解法一:为边长为2的等边三角形,为正三棱锥,又,分别为、中点,又,平面,平面,为正方体一部分,即 ,故选D解法二:设,分别为中点,且,为边长为2的等边三角形,又中余弦定理,作于,为中点,又,两两垂直,故选D.【点睛】本题考查学生空间想象能力,补体法解决外接球问题可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分
7、.9. 某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2017年1月至2019年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论正确的是( )A. 年接待游客量逐年增加B. 各年的月接待游客量高峰期大致在8月C. 2017年1月至12月月接待游客量的中位数为30D. 各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】ABD【解析】【分析】观察折线图,掌握折线图所表达的正确信息,逐一判断各选项.【详解】由2017年1月至2019年12月期间月接待游客量的折线图得:在A中,年接待游客量虽然逐月波动,但总体上逐年增加
8、,故A正确;在B中,各年的月接待游客量高峰期都在8月,故B正确;在C中,2017年1月至12月月接待游客量的中位数小于30,故C错误;在D中,各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D正确.故选:ABD【点睛】本题主要考查学生对于折线图的理解能力,考查图表的识图能力,属于基础题.10. 如图,正方体的棱长为1,线段上有两个动点、,且,则下列结论中正确的是( )A. B. 平面C. 的面积与的面积相等D. 三棱锥的体积为定值【答案】ABD【解析】【分析】对各选项逐一作出正确的判断即可.【详解】可证平面,从而,故A正确;由平面,可知平面,B也正确;连结交于,则为
9、三棱锥的高,三棱锥的体积为为定值,D正确;很显然,点和点到的距离是不相等的,C错误.故选:ABD【点睛】本题主要考查空间线、面的位置关系及空间几何体的体积与面积,属于中档题.11. 已知椭圆的左、右焦点分别为、,直线与椭圆相交于点、,则( )A. 当时,的面积为B. 不存在使为直角三角形C. 存在使四边形面积最大D. 存在,使的周长最大【答案】AC【解析】【分析】对各选项逐一作出正确的判断即可.【详解】如图:对于A选项,经计算显然正确;对于B选项,时,可以得出,当时,根据对称性,存在使为直角三角形,故B错误;对于C选项,根据椭圆对称性可知,当时,四边形面积最大,故C正确;对于D选项,由椭圆的定
10、义得:的周长;,当过点时取等号;即直线过椭圆的右焦点时,的周长最大;此时直线;但,所以不存在,使的周长最大.故D错误.故选:AC【点睛】本题主要考查了椭圆的定义及几何性质,考查学生识图能力,属于中档题.12. 函数在上有定义,若对任意,有则称在上具有性质.设在上具有性质,则下列说法错误的是:( )A. 在上的图像是连续不断的;B. 在上具有性质;C. 若在处取得最大值1,则,;D. 对任意,有【答案】AB【解析】【分析】根据题意,对各选项逐一作出正确的判断即可.【详解】对于A选项,反例,此函数满足性质但不连续,故A错误;对于B选项,具有该性质,但是不具有该性质,故B错误;对于C选项,由性质P得
11、,且,故,故C正确;对于D选项,故D正确.故选:AB【点睛】本题主要考查函数的概念,函数的性质,考查学生分析能力,推理判断能力,属于中档题.三、填空题:本题共4小题,每小题5分,共20分.13. 从位女生,位男生中选人参加科技比赛,且至少有位女生入选,则不同的选法共有_种(用数字填写答案)【答案】【解析】分析】首先想到所选的人中没有女生,有多少种选法,再者需要确定从人中任选人的选法种数,之后应用减法运算,求得结果.【详解】根据题意,没有女生入选有种选法,从名学生中任意选人有种选法,故至少有位女生入选,则不同的选法共有种,故答案是.【点睛】该题是一道关于组合计数的题目,并且在涉及到“至多、至少”
12、问题时多采用间接法,一般方法是得出选人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有名女生和有两名女生分别有多少种选法,之后用加法运算求解.14. 已知,且,则的最小值为_.【答案】【解析】【分析】由题意首先求得的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立的条件.详解】由可知,且:,因为对于任意,恒成立,结合均值不等式的结论可得:.当且仅当,即时等号成立.综上可得的最小值为.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正各项均为正;二定积或和为定值;三相等等号能否取得”,若忽略了某个条件,就会出现错误15.
13、 已知椭圆,双曲线若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为_;双曲线N的离心率为_【答案】 (1). (2). 2【解析】分析:由正六边形性质得渐近线的倾斜角,解得双曲线中关系,即得双曲线N的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,解得椭圆M的离心率.详解:由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,所以椭圆M的离心率为双曲线N的渐近线方程为,由题意得双曲线N的一条渐近线的倾斜角为, 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉
14、得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.16. 已知函数,则的最小值是_【答案】【解析】分析:首先对函数进行求导,化简求得,从而确定出函数的单调区间,减区间为,增区间为,确定出函数的最小值点,从而求得代入求得函数的最小值.详解:,所以当时函数单调减,当时函数单调增,从而得到函数的减区间为,函数的增区间为,所以当时,函数取得最小值,此时,所以,故答案是.点睛:该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值.