收藏 分享(赏)

吉林省东北师范大学附属中学2015届高三文科数学一轮复习:椭圆2.doc

上传人:高**** 文档编号:515218 上传时间:2024-05-28 格式:DOC 页数:9 大小:267.50KB
下载 相关 举报
吉林省东北师范大学附属中学2015届高三文科数学一轮复习:椭圆2.doc_第1页
第1页 / 共9页
吉林省东北师范大学附属中学2015届高三文科数学一轮复习:椭圆2.doc_第2页
第2页 / 共9页
吉林省东北师范大学附属中学2015届高三文科数学一轮复习:椭圆2.doc_第3页
第3页 / 共9页
吉林省东北师范大学附属中学2015届高三文科数学一轮复习:椭圆2.doc_第4页
第4页 / 共9页
吉林省东北师范大学附属中学2015届高三文科数学一轮复习:椭圆2.doc_第5页
第5页 / 共9页
吉林省东北师范大学附属中学2015届高三文科数学一轮复习:椭圆2.doc_第6页
第6页 / 共9页
吉林省东北师范大学附属中学2015届高三文科数学一轮复习:椭圆2.doc_第7页
第7页 / 共9页
吉林省东北师范大学附属中学2015届高三文科数学一轮复习:椭圆2.doc_第8页
第8页 / 共9页
吉林省东北师范大学附属中学2015届高三文科数学一轮复习:椭圆2.doc_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 椭圆及其标准方程(教案)一、 知识梳理:1. 椭圆的定义 定义的理解:当2a=2c时, ; 当2ab0)焦点在y轴上的标准方程: + =1(ab0) 两种方程可用统一形式表示:A+ B=1 (A0,B0且AB) ,当AB时,焦点在 轴上; 对椭圆的两种标准方程,都有,焦点都在长轴上,且a、b、c始终满足3.椭圆焦点所在的轴的判定方法:在标准方程中,只要看分母大小,如果大于的分母,则椭圆的焦点在x轴上,反之,焦点在y上.4.椭圆的几何性质对于椭圆 + =1(ab0) (1) 范围:由标准方程+ =1(ab0)可知,|x|a , |y|b,说明椭圆位于直线x=y=所围成的矩形内;(2) 对称性:

2、 椭圆+ =1(ab0) 关于直线x轴,y轴,及原点对称;(3) 顶点:, 是椭圆与x轴的两个交点,是椭圆与y轴的两个交点.线段、分别叫椭圆的长轴与短轴,它们的长分别是2a,2b;a,b分别叫椭圆的半长轴长与半短轴长。(4) 离心率:椭圆的焦距与长轴长的比值e= 叫椭圆的离心率,范围:(0,1),越接近于0越圆,越拉近于1越扁,常用=1- ;椭圆上点到焦点和直线x= 的距离之比等于离心率,由此可以求出椭圆上的点到相应的焦点的距离(焦半径)|p|=a+e |p|=a-e (5) 二次曲线的弦长公式: 整理得到x的方程: 整理得到y的方程: 二、题型探究探究一:椭圆的标准方程(求椭圆方程常用方法:

3、待定系数法)例1:求适合下列条件的椭圆的标准方程(1)、两个焦点坐标分别为(-4,0)、(4,0),椭圆上的点P到两个焦点的距离之和为10;(=1)(2)、椭圆经过两点A(-1.5,-2.5),B()探究二:椭圆的几何性质例2:已知,为椭圆+ =1(ab0)的左、右焦点,过作椭圆的弦AB,若的周长为16,|A|、|、| A|成等差数列,求椭圆的方程。 (=1)探究三:直线与椭圆例3:已知,分别为椭圆+ =1(ab0)的左、右焦点,过斜率为1的直线a与椭圆交于A,B两点,且|A|、|、| B|成等差数列,(1)、求椭圆的离心率;(e=) (可以用焦半径公式或弦长公式)(2)、设点P(0,-1)满

4、足|PA|=|PB|,求椭圆的方程。(=1)(利用AB:y=x+c,AB中垂线y=-x-1求交点, 再用韦达定理处理) 解析(1)由椭圆定义知|AF2|BF2|AB|4a,又2|AB|AF2|BF2|,得|AB|a.l的方程为yxc,其中c.设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组消去y,整理得(a2b2)x22a2cxa2(c2b2)0,则x1x2,x1x2.因为直线AB斜率为1,所以|AB|x2x1|,得a,故a22b2,所以E的离心率e.(2)设AB的中点为N(x0,y0),由(1)知x0c,y0x0c.由|PA|PB|得kPN1.即1,得c3,从而a3,b3.故

5、椭圆E的方程为1.三、方法提升(1)、熟练掌握椭圆的标准方程,特别是a,b,c,e四个数值的换算关系;(2)、掌握椭圆的定义、几何性质,通过运算得到的椭圆特殊结论要留下深刻印象;(3)、为简化运算,处理交点问题时,常采用“设而不求”的办法,一般是设出交点后,再用韦达定理处理,这种方法在处理直线与圆锥曲线的位置关系中极为重要。四、反思感悟 五、课时作业一、选择题1、.【广西(大纲)】9. 已知椭圆C:的左、右焦点为、,离心率为,过的直线交C于A、B两点,若的周长为,则C的方程为( )A B C D解析 9A根据题意,因为AF1B的周长为4,所以|AF1|AB|BF1|AF1|AF2|BF1|BF

6、2|4a4,所以a.又因为椭圆的离心率e,所以c1,b2a2c2312,所以椭圆C的方程为1.2、【江西2014】14 设椭圆的左右焦点为,作作轴的垂线与交于两点,与轴交于点,若,则椭圆的离心率等于_【解析】 因为为椭圆的通径,所以,则由椭圆的定义可知: ,又因为,则,即,得,又离心率,结合得到:3、椭圆中,F1、F2为左、右焦点,A为短轴一端点,弦AB过左焦点F1,则ABF2的面积为( )(A)3 (B) (C) (D)44、方程=1表示焦点在y轴上的椭圆,则m的取值范围是( )(A)-16m25 (B)-16m (C)m翰林汇5、已知椭圆的离心率e=,则m的值为( )(A)3 (B)3或

7、(C) (D)或翰林汇6、椭圆的一焦点与两顶点为等边三角形的三个顶点,则椭圆的长轴长是短轴长的 ( )(A)倍 (B)2倍 (C)倍 (D)倍翰林汇 7、椭圆ax2by2ab=0(ab0)的焦点坐标为( )(A)(0,) (B)(,0)(C)(0,) (D)(,0)翰林汇8、椭圆x2+4y2=1的离心率为 ( )(A)翰林汇9、从椭圆短轴的一个端点看两焦点的视角是1200,则这个椭圆的离心率e= ( )A) (B) (C) (D)翰林汇10、曲线与曲线(m9)一定有( )(A)相等的长轴长 (B)相等的焦距 (C)相等的离心率 (D)相同的准线二、填空题翰林汇11.(1)中心在原点,长半轴长与

8、短半轴长的和为9,离心率为0.6的椭圆的方程为_ _;(2)对称轴是坐标轴,离心率等于,且过点(2,0)的椭圆的方程是_ _翰林汇12.(1)短轴长为6,且过点(1,4)的椭圆标准方程是 _ _ ;(2)顶点(-6,0),(6,0)过点(3,3)的椭圆方程是_ _翰林汇13. 【辽宁2014】15. 已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则 . 解析 15.设MN的中点为G,则点G在椭圆C上,设点M关于C的焦点F1的对称点为A,点M关于C的焦点F2的对称点为B,则有|GF1|AN|,|GF2|BN|,所以|AN|BN|2(|GF1|GF

9、2|)4a12.14.已知椭圆的离率为,则m= 翰林汇三、解答题15、求椭圆的内接矩形面积的最大值.16【2014安徽】21(本小题满分13分)设,分别是椭圆:的左右焦点,过点的直线交椭圆于两点,()若的周长为16,求;()若,求椭圆的离心率17ABC的两个顶点坐标分别是B(0,6)和C(0,-6),另两边AB、AC的斜率的乘积是-,求顶点A的轨迹方程.18已知椭圆的焦点是,为椭圆上一点,且是和的等差中项.(1)求椭圆的方程;(2)若点P在第三象限,且120,求.参考答案1.B 2.D 3.D 4.C 5.B 6.B 7.C 8.A 9.A 10.B翰林汇11. (1)或;(2)或翰林汇12. (1);(2)翰林汇 13. y,(0,-2).(0,2) 翰林汇14. 3或15 .16.解:21(本小题满分13分) ()由得。 因为的周长为16,所以由椭圆定义可得 故。()设,则且,由椭圆定义可得 在中,由余弦定理可得即化简可得,而,故于是有,因此,可得故为等腰直角三角形。从而所以椭圆的离心率。17.解:设顶点A的坐标为.依题意得 ,顶点A的轨迹方程为 .说明:方程对应的椭圆与轴有两个交点,而此两交点为(,)与(0,6)应舍去.18解:(1)由题设4, 2c=2, 椭圆的方程为.()设,则60由正弦定理得:由等比定理得:整理得: 故.w.w.w.k.s.5.u.c.o.m

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3