收藏 分享(赏)

2020高考数学(理)大一轮复习配套练习:第十章 1 第1讲 分类加法计数原理与分步乘法计数原理 WORD版含解析.doc

上传人:高**** 文档编号:506969 上传时间:2024-05-28 格式:DOC 页数:7 大小:164KB
下载 相关 举报
2020高考数学(理)大一轮复习配套练习:第十章 1 第1讲 分类加法计数原理与分步乘法计数原理 WORD版含解析.doc_第1页
第1页 / 共7页
2020高考数学(理)大一轮复习配套练习:第十章 1 第1讲 分类加法计数原理与分步乘法计数原理 WORD版含解析.doc_第2页
第2页 / 共7页
2020高考数学(理)大一轮复习配套练习:第十章 1 第1讲 分类加法计数原理与分步乘法计数原理 WORD版含解析.doc_第3页
第3页 / 共7页
2020高考数学(理)大一轮复习配套练习:第十章 1 第1讲 分类加法计数原理与分步乘法计数原理 WORD版含解析.doc_第4页
第4页 / 共7页
2020高考数学(理)大一轮复习配套练习:第十章 1 第1讲 分类加法计数原理与分步乘法计数原理 WORD版含解析.doc_第5页
第5页 / 共7页
2020高考数学(理)大一轮复习配套练习:第十章 1 第1讲 分类加法计数原理与分步乘法计数原理 WORD版含解析.doc_第6页
第6页 / 共7页
2020高考数学(理)大一轮复习配套练习:第十章 1 第1讲 分类加法计数原理与分步乘法计数原理 WORD版含解析.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 基础题组练1从集合0,1,2,3,4,5,6中任取两个互不相等的数a,b组成复数abi,其中虚数的个数是()A30 B42C36 D35解析:选C.因为abi为虚数,所以b0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6636个虚数2已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A40B16 C13D10解析:选C.分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面根据分类加法计数原理知,共可以确定8513个不同的平面3已知集合Px,1,Qy,1,2,其

2、中x,y1,2,3,9,且PQ.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A9 B14C15 D21解析:选B.因为Px,1,Qy,1,2,且PQ,所以xy,2所以当x2时,y3,4,5,6,7,8,9,共7种情况;当xy时,x3,4,5,6,7,8,9,共7种情况故共有7714种情况,即这样的点的个数为14.4从集合1,2,3,10中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A3 B4C6 D8解析:选D.当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为时,等比数列可为4,6,9

3、.同理公比为,时,也有4个故共有8个等比数列5从集合1,2,3,4,10中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A32个 B34个C36个 D38个解析:选A.将和等于11的数放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有C2种,共有2222232个子集故选A.6某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从09这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可

4、能情况有()A180种 B360种C720种 D960种解析:选D.按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法因此车牌号码可选的所有可能情况有53444960(种)7直线l:1中,a1,3,5,7,b2,4,6,8若l与坐标轴围成的三角形的面积不小于10,则这样的直线的条数为()A6 B7C8 D16解析:选B.l与坐标轴围成的三角形的面积为Sab10,即ab20.当a1时,不满足;当a3时,b8,即1条当a5,7时,b4,6,8,此时a的取法有2种,b的取法有3种,则直线l的条数为236.故满足条件的直线的条数为167.故选B.8一个旅游景区

5、的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不重复(除交汇点O外)的不同游览线路有()A6种 B8种C12种 D48种解析:选D.从P点处进入结点O以后,游览每一个景点所走环形路线都有2个入口(或2个出口),若先游览完A景点,再进入另外两个景点,最后从Q点处出有(44)216种不同的方法;同理,若先游览B景点,有16种不同的方法;若先游览C景点,有16种不同的方法,因而所求的不同游览线路有31648(种)9如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有()A72种 B48种C24种 D12种解析:

6、选A.法一:首先涂A有4种涂法,则涂B有3种涂法,C与A,B相邻,则C有2种涂法,D只与C相邻,则D有3种涂法,所以共有432372种涂法法二:按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有432124种涂法;二是用3种颜色,这时A,B,C的涂法有43224种,D只要不与C同色即可,故D有2种涂法,所以不同的涂法共有2424272(种)10(2019惠州调研)我们把各位数字之和为6的四位数称为“六合数”(如2 013 是“六合数”),则首位为2的“六合数”共有()A18个 B15个C12个 D9个解析:选B.依题意,这个

7、四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数分别为400,040,004;由3,1,0组成6个数分别为310,301,130,103,013,031;由2、2、0组成3个数分别为220,202,022;由2,1,1组成3个数分别为211,121,112.共计:363315(个)11满足a,b1,0,1,2,且关于x的方程ax22xb0有实数解的有序数对(a,b)的个数为()A14 B13C12 D10解析:选B.当a0时,关于x的方程为2xb0,此时有序数对(0,1),(0,0),(0,1),(0,2)均满足要求;当a0时,44ab0,ab1,此时满足要求的有序数对为(1,1

8、),(1,0),(1,1),(1,2),(1,1),(1,0),(1,1),(2,1),(2,0)综上,满足要求的有序数对共有13个,故选B.12将1,2,3,9这9个数字填在如图所示的空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法有()34A.6种 B12种C18种 D24种解析:选A.根据数字的大小关系可知,1,2,9的位置是固定的,如图所示,则剩余5,6,7,8这4个数字,而8只能放在A或B处,若8放在B处,则可以从5,6,7这3个数字中选一个放在C处,剩余两个位置固定,此时共有3种方法,同理,若8放在A处,也有3种方法,所以共有6种方

9、法.12D34ACB913.把3封信投到4个信箱,所有可能的投法共有_种解析:第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有4364种投法答案:6414从班委会5名成员中选出3名,分别担任班级学生委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有_种(用数字作答)解析:第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人担任文娱委员,有3种选法第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选

10、法由分步乘法计数原理可得,不同的选法共有34336(种)答案:3615已知ABC三边a,b,c的长都是整数,且abc,如果b25,则符合条件的三角形共有_个解析:根据三边构成三角形的条件可知,c25a.第一类:当a1,b25时,c可取25,共1个值;第二类,当a2,b25时,c可取25,26,共2个值;当a25,b25时,c可取25,26,49,共25个值;所以三角形的个数为1225325.答案:32516在某一运动会百米决赛上,8名男运动员参加100米决赛其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有_种解析:分两步安排这8名运

11、动员第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排故安排方式有43224(种)第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,所以安排方式有54321120(种)故安排这8人的方式共有241202 880(种)答案:2 880综合题组练1(2019湖南郴州模拟)用六种不同的颜色给如图所示的六个区域涂色,要求相邻区域不同色,则不同的涂色方法共有()A4 320种 B2 880种C1 440种 D720种解析:选A.分步进行:1区域有6种不同的涂色方法,2区域有5种不同的涂色方法,3区域有4种不同的涂色方法,4区域有3种不同的涂色方法,6区域有4种不同的涂色方法

12、,5区域有3种不同的涂色方法根据分步乘法计数原理可知,共有6543344 320种不同的涂色方法,故选A.2在某校举行的羽毛球两人决赛中,采用5局3胜制的比赛规则,先赢3局者获胜,直到决出胜负为止若甲、乙两名同学参加比赛,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有()A6种 B12种C18种 D20种解析:选D.分三种情况:恰好打3局(一人赢3局),有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有236种情形;恰好打5局(一人前4局中赢2局,输2局,第5局赢),共有212种情形所有可能出现的情形共有261220种故选D.3(创新型)(2019湖南十二校联考)

13、若m,n均为非负整数,在做mn的加法时各位均不进位(例如:1343 8023 936),则称(m,n)为“简单的”有序对,而mn称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是_解析:第1步,110,101,共2种组合方式;第2步,909,918,927,936,990,共10种组合方式;第3步,404,413,422,431,440,共5种组合方式;第4步,202,211,220,共3种组合方式根据分步乘法计数原理,值为1 942的“简单的”有序对的个数为21053300.答案:3004xyz10的正整数解的组数为_解析:可按x的值分类:当x1时,yz9,共有8组;当x

14、2时,yz8,共有7组;当x3时,yz7,共有6组;当x4时,yz6,共有5组;当x5时,yz5,共有4组;当x6时,yx4,共有3组;当x7时,yz3,共有2组;当x8时,yz2,共有1组由分类加法计数原理可知:共有8765432136(组)答案:365已知集合M3,2,1,0,1,2,若a,b,cM,则:(1)yax2bxc可以表示多少个不同的二次函数?(2)yax2bxc可以表示多少个图象开口向上的二次函数?解:(1)yax2bxc表示二次函数时,a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此yax2bxc可以表示566180个不同的二次函数(2)当yax2bxc的图象

15、开口向上时,a的取值有2种情况,b,c的取值均有6种情况,因此yax2bxc可以表示26672个图象开口向上的二次函数6(综合型)如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数解:法一:按所用颜色种数分类第一类:5种颜色全用,共有A种不同的方法;第二类:只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2A种不同的方法;第三类:只用3种颜色,则A与C,B与D必定同色,共有A种不同的方法由分类加法计数原理,得不同的染色方法种数为A2AA420(种)法二:以S,A,B,C,D顺序分步染色第一步:S点染色,有5种方法;第二步:A点染色,与S在同一条棱上,有4种方法;第三步:B点染色,与S,A分别在同一条棱上,有3种方法;第四步:C点染色,也有3种方法,但考虑到D点与S,A,C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S,B也不同色,所以C点有2种染色方法,D点也有2种染色方法由分步乘法、分类加法计数原理得不同的染色方法共有543(1322)420(种)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3