ImageVerifierCode 换一换
格式:PPT , 页数:51 ,大小:1.99MB ,
资源ID:504742      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-504742-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((统考版)2024高考数学二轮专题复习 第三篇 关键能力为重 专题二 数列 第2讲 数列的通项与求和课件 文.ppt)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

(统考版)2024高考数学二轮专题复习 第三篇 关键能力为重 专题二 数列 第2讲 数列的通项与求和课件 文.ppt

1、第2讲 数列的通项与求和考点一考点二考点三考点一 数列的递推与通项归纳总结由数列的递推式求通项公式的常用方法提醒由Sn求an时,一定要注意分n1和n2两种情况进行讨论,最后验证两者可否合为一个式子,若不能,则用分段形式来表示对点训练12023广西南宁市第三中学一模已知数列an满足nan1(n1)an2,a11,则数列an的通项公式为_an3n222023河南省商丘市三模已知数列an的前n项和为Sn,a11,2nSn12(n1)Snn(n1),则数列an的通项an_n考点二 数列求和依“项”办“事”归纳总结利用分组法求和的3个关键点会“列方程”会利用方程思想求出等差数列与等比数列中的基本量会“用

2、公式”会利用等差(比)数列的通项公式,求出所求数列的通项公式会“分组求和”观察数列的通项公式的特征,若数列是由若干个简单数列(如等差数列、等比数列、常数列等)组成,则求前n项和时可用分组求和法,把数列分成几个可以直接求和的数列归纳总结求解此类题需过“三关”:一是“定通项”关,即会利用求通项的常见方法,求出数列的通项公式;二是“巧裂项”关,即将数列的通项公式准确裂项,表示为两项之差的形式;三是“消项求和”关,即正确把握消项的规律,求和时正负相消,只剩下首末若干项,从而准确求和归纳总结掌握解题“3步骤”提醒(1)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S

3、nqSn”的表达式(2)在应用错位相减法求和时,若等比数列的公比为参数,应分公比q1和q1两种情况求解(3)对相减后的和式的结构认识模糊,错把中间的n1项和当作n项和考点三 数列的综合应用考点三 数列的综合应用函数、数列“一家亲”数列与函数、不等式的综合问题是高考命题的一个方向,此类问题突破的关键在于通过函数关系寻找数列的递推关系,求出数列的通项或前n项和,再利用数列或数列对应的函数解决最值、范围问题,通过放缩进行不等式的证明例 5 2023四川绵阳模拟ABC的内角A,B,C所对的边分别为a,b,c,若A,B,C成等差数列,且c2a.(1)求角A的大小;(2)设数列an满足an2n|cos n

4、C|,其前n项和为Sn,若Sn20,求n的值归纳总结破解数列与三角函数相交汇问题的策略:一是活用两定理,即会利用正弦定理和余弦定理破解三角形的边角关系;二是会用公式,即会利用等差数列与等比数列的通项公式求解未知量;三是求和有法,针对数列通项公式的特征,灵活应用裂项相消法、分组求和法、错位相减法等求和1 011高考5个大题 解题研诀窍(二)数列问题重在“归”化归思维流程找突破口技法指导迁移搭桥化归的常用策略利用化归思想可探索一些一般数列的简单性质等差数列与等比数列是数列中的两个特殊的基本数列,高考中通常考查的是非等差、等比数列问题,应对的策略就是通过化归思想,将其转化为这两种数列快审题求什么想什么判断数列bn是等比数列,想到判断等比数列的方法求an的通项公式,想到求bn的通项公式给什么用什么题后悟道等差、等比数列基本量的计算模型(1)分析已知条件和求解目标,确定为最终解决问题需要首先求解的中间问题如为求和需要先求出通项、为求出通项需要先求出首项和公差(公比)等,确定解题的逻辑次序(2)注意细节在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1