ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:3.02MB ,
资源ID:503639      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-503639-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021版高考数学一轮复习第八章立体几何8.7.1利用空间向量求线线角与线面角练习苏教版.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021版高考数学一轮复习第八章立体几何8.7.1利用空间向量求线线角与线面角练习苏教版.doc

1、8.7.1 利用空间向量求线线角与线面角考点一异面直线所成的角1.在直三棱柱ABC-A1B1C1中,BCA=90,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.2.在直三棱柱ABC-A1B1C1中,AA1=AB=AC,ABAC,M是CC1的中点,Q是BC的中点,点P在A1B1上,则直线PQ与直线AM所成的角为_.3.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E是棱CC1的中点,=,若异面直线D1E和A1F所成角的余弦值为,则的值为_.【解析】1.选C.建立如图所示空间直角坐标系.设BC=CA=CC1=2,则可得A(2,

2、0,0),B(0,2,0),M(1,1,2),N(1,0,2),所以=(1,-1,2),=(-1,0,2).所以cos=.2.建立如图所示的空间直角坐标系,设AA1=2,则A(0,0,0),M(0,2,1),P(t,0,2)(0t2),Q(1,1,0),故=(0,2,1),=(1-t,1,-2),而=0,故.所以PQ与AM所成的角为.答案:3.以D为原点,以DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,正方体的棱长为2,则A1,D1,E,A ,所以=,=+=+=+=,所以cos=,解得=(=-舍去).答案:求异面直线所成的角的两个关注点(1)用向量方法求两条异面直线所成的角,是通过

3、两条直线的方向向量的夹角来求解的.(2)由于两异面直线所成角的范围是0,两方向向量的夹角的范围是(0,),所以要注意二者的区别与联系,应有cos =|cos |.考点二直线与平面所成的角【典例】(2018全国卷)如图,在三棱锥P-ABC中,AB=BC=2, PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO平面ABC.(2)若点M在棱BC上,且二面角M-PA-C为30,求PC与平面PAM所成角的正弦值.【解析】(1)因为AP=CP=AC=4,O为AC的中点,所以OPAC,且OP=2.连接OB.因为AB=BC=AC,所以ABC为等腰直角三角形,且OBAC,OB=AC=2.由OP2+OB

4、2=PB2知POOB.由OPOB,OPAC,OBAC=O,知PO平面ABC.(2)连接OM,如图,以O为坐标原点,的方向为x轴正方向,的方向为y轴正方向,的方向为z轴正方向,建立空间直角坐标系.由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0),P(0,0,2), =(0,2,2),取平面PAC的法向量=(2,0,0).设M(a,2-a,0)(0a2),则=(a,4-a,0).设平面PAM的法向量为n=(x,y,z).由n=0,n=0得可取n=(a-4),a,-a),所以cos=.由已知得|cos|=.所以=.解得a=-4(舍去),a=.所以n=.又=(0,2,-

5、2),所以cos=.所以PC与平面PAM所成角的正弦值为.利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.如图,四棱柱ABCD-A1B1C1D1的底面为菱形,BAD=120,AB=2,E,F分别为CD,AA1的中点.(1)求证:DF平面B1AE.(2)若AA1底面ABCD,且直线AD1与平面B1AE所成线面角的正弦值为,求AA1的长.【解析】(1)设G为AB1的中点,连接EG,GF,因为FGA1B1,又DEA1B1,所以F

6、GDE,所以四边形DEGF是平行四边形,所以DFEG,又DF平面B1AE,EG平面B1AE,所以DF平面B1AE.(2)因为ABCD是菱形,且ABC=60,所以ABC是等边三角形.取BC中点M,则AMAD,因为AA1平面ABCD,所以AA1AM,AA1AD,建立如图所示的空间直角坐标系A-xyz,令AA1=t(t0),则A(0,0,0),E,0,B1(,-1,t),D1(0,2,t),=,0, =(,-1,t),=(0,2,t),设平面B1AE的一个法向量为n=(x,y,z),则n=(x+y)=0且n=x-y+tz=0,取n=(-t,t,4),设直线AD1与平面B1AE所成角为,则sin =,解得t=2,故线段AA1的长为2.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1