ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:397.50KB ,
资源ID:501090      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-501090-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(山东省烟台市芝罘区2016高三数学专题复习函数2复合函数常考题型.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

山东省烟台市芝罘区2016高三数学专题复习函数2复合函数常考题型.doc

1、烟台芝罘区数学复合函数常考题型2016高三专题复习-函数(2)复合函数常考的题型有:(1) 求解定义域问题(已知的定义域,求的定义域;已知的定义域,求的定义域; 已知的定义域,求的定义域)遵循等位等效性原则。(2) 判定函数单调性问题: 已知函数.若在区间 )上是减函数,其值域为(c,d),又函数 在区间(c,d)上是减函数,那么,原复合函数在区间 )上是增 函数.遵循同增异减原则。一、复合函数定义域问题: (1)、已知的定义域,求的定义域例1. 设函数的定义域为(0,1),则函数的定义域为_。解析:函数的定义域为(0,1)即,所以的作用范围为(0,1)又f对lnx作用,作用范围不变,所以解得

2、,故函数的定义域为(1,e)例2. 若函数,则函数的定义域为_。答案:(2)、已知的定义域,求的定义域思路:设的定义域为D,即,由此得,所以f的作用范围为E,又f对x作用,作用范围不变,所以为的定义域。例3. 已知的定义域为,则函数的定义域为_。解析:的定义域为,即,由此得所以f的作用范围为,又f对x作用,作用范围不变,所以即函数的定义域为例4. 已知,则函数的定义域为_。 答案:(3)、已知的定义域,求的定义域思路:设的定义域为D,即,由此得,的作用范围为E,又f对作用,作用范围不变,所以,解得,F为的定义域。例5. 若函数的定义域为,则的定义域为_。解析:的定义域为,即,由此得的作用范围为

3、又f对作用,所以,解得 即的定义域为。二、复合函数单调性问题已知函数.若在区间 )上是减函数,其值域为(c,d),又函数在区间(c,d)上是减函数,那么,原复合函数在区间 )上是增函数.例、证明:在区间)内任取两个数,使因为在区间)上是减函数,所以,记, 即因为函数在区间(c,d)上是减函数,所以,即,故函数在区间)上是增函数.复合函数的单调性是由两个函数共同决定 “同向得增,异向得减”或“同增异减”.复合函数的单调性判断例1、 求函数的单调区间,并用单调定义给予证明解:定义域 单调减区间是 设 则 = 又底数 即 在上是减函数 同理可证:在上是增函数例2、讨论函数的单调性.解由得函数的定义域

4、为则当时,若,为增函数,为增函数.若,为减函数.为减函数。当时,若,则为减函数,若,则为增函数.例3、.已知y=(2-)在0,1上是x的减函数,求a的取值范围. 答案:0a1或1a2例4、已知函数(为负整数)的图象经过点,设.问是否存在实数使得在区间上是减函数,且在区间上是减函数?并证明你的结论。解析由已知,得,其中 即, 解得为负整数,即 ,假设存在实数,使得满足条件,设,当时,为减函数,,当时, 增函数,.由、可知,故存在针对性课堂训练一、复合函数定义域问题部分1、 已知函数的定义域为,求函数的定义域。 答案:2、 已知函数的定义域为,求的定义域。 答案:3、 已知函数的定义域为,求的定义域。 答案:二、复合函数单调性问题: 1、函数y(x23x2)的单调递减区间是() 答案(2,) 2、找单调区间. (1); (2) 答案:(1)在上是增函数,在上是减函数。 (2)单调增区间是,减区间是。 3、讨论的单调性。 答案:时为增函数,时,为增函数。

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1