ImageVerifierCode 换一换
格式:PPT , 页数:35 ,大小:922KB ,
资源ID:499970      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-499970-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((新教材)2020-2021学年高中苏教版数学必修2课件:15-3-2 独立事件的概率 .ppt)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

(新教材)2020-2021学年高中苏教版数学必修2课件:15-3-2 独立事件的概率 .ppt

1、第2课时 独立事件的概率必备知识自主学习 独立事件(1)定义:一般地,如果事件A是否发生不影响事件B发生的概率,那么称A,B为相互独立事件.(2)独立事件的概率计算公式:A,B相互独立P(AB)=P(A)P(B).说明:若A,B相互独立,则与B,A与也相互独立.导思 1.如何判断两个事件是否为独立事件?2.如何求相互独立事件的概率?【基础小测】1.辨析记忆(对的打“”,错的打“”)(1)不可能事件与任何一个事件相互独立.()(2)必然事件与任何一个事件相互独立.()(3)“P(AB)=P(A)P(B)”是“事件A,B相互独立”的充要条件.()提示:(1).不可能事件的发生对任何一个事件的发生没

2、有影响.(2).必然事件的发生对任何一个事件的发生没有影响.(3).根据相互独立的定义可知正确.2.一件产品要经过2道独立的加工程序,第一道工序的次品率为a,第二道工序的次品率为b,则产品的正品率为()A.1-a-bB.1-abC.(1-a)(1-b)D.1-(1-a)(1-b)【解析】选C.设A表示“第一道工序的产品为正品”,B表示“第二道工序的产品为正品”,则P(AB)=P(A)P(B)=(1-a)(1-b).3.(教材二次开发:习题改编)甲、乙两人独立地破译某个密码,甲译出密码的概率为0.35,乙译出密码的概率为0.25,则恰有1人译出密码的概率为_.【解析】记甲,乙两人译出密码分别为事

3、件A,B,则P(A)=0.35,P(B)=0.25,恰有一人译出密码为事件A+B,所以P(A+B)=P(A)P()+P()P(B)=0.35(1-0.25)+0.25(1-0.35)=0.425.答案:0.425关键能力合作学习类型一 事件独立性的判断(逻辑推理)【题组训练】1.一袋中装有5只白球,3只黄球,在有放回地摸球中,用A1表示第一次摸得白球,A2表示第二次摸得白球,则事件A1与是()A.相互独立事件 B.不相互独立事件C.互斥事件D.对立事件2.抛掷3枚质地均匀的硬币,若A=既有正面向上又有反面向上,B=至多有1枚反面向上,则A与B()A.是互斥事件B.是对立事件C.是相互独立事件D

4、.不是相互独立事件3.若P(AB)=,P()=,P(B)=,则事件A与B的关系是()A.事件A与B互斥B.事件A与B对立C.事件A与B相互独立D.事件A与B既互斥又独立【解题策略】两事件是否相互独立的判断(1)直接法:由事件本身的性质直接判定两个事件发生是否相互影响;(2)定义法:如果事件A,B同时发生的概率等于事件A发生的概率与事件B发生的概率的积,则事件A,B相互独立.类型二 求相互独立事件的概率(逻辑推理、数学运算)【典例】甲、乙二人独立破译同一密码,甲破译密码的概率为0.8,乙破译密码的概率为0.7.记事件A:甲破译密码,事件B:乙破译密码.(1)求甲、乙二人都破译密码的概率;(2)求

5、恰有一人破译密码的概率;(3)小明同学解答“求密码被破译的概率”的过程如下:解:“密码被破译”也就是“甲、乙二人中至少有一人破译密码”,所以随机事件“密码被破译”可以表示为A+B,所以P(A+B)=P(A)+P(B)=0.8+0.7=1.5.请指出小明同学错误的原因并给出正确解答过程.【解题策略】求相互独立事件概率的步骤(1)确定各事件之间是相互独立的.(2)确定这些事件可以同时发生.(3)求出每个事件发生的概率,再根据相互独立事件的概率计算公式求解.【跟踪训练】甲、乙2个人独立地破译一个密码,他们能译出密码的概率分别为和,求:(1)2个人都译出密码的概率;(2)2个人都译不出密码的概率;(3

6、)至多1个人译出密码的概率.类型三 独立事件概率的应用(逻辑推理、数学建模)【典例】随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.广元某景点设有共享电动车租车点,共享电动车的收费标准是每小时2元(不足1小时的部分按1小时计算).甲、乙两人各租一辆电动车,若甲、乙不超过一小时还车的概率分别为,;一小时以上且不超过两小时还车的概率分别为,;两人租车时间都不会超过三小时.(1)求甲、乙两人所付租车费用相同的概率;(2)求甲、乙两人所付的租车费用之和大于或等于8的概率.【思路导引】(1)甲、乙两人所付费用相同即同为2,4,6元,求出概率

7、,由此利用互斥事件概率加法公式能求出所付费用相同的概率.(2)先分析两人费用之和大于或等于8的事件所包含的事件,由此能求出两人费用之和大于或等于8的概率.【解题策略】求解概率综合应用问题的思路(1)“大化小”,即将问题化为若干个彼此互斥或相互独立的事件.(2)运用概率的加法公式和乘法公式求解,在运用乘法公式时一定要注意是否满足相互独立,只有相互独立才能运用乘法公式.(3)正难则反,间接处理.在求事件的概率时,若遇到“至少”或“至多”等概率问题,可从求对立事件的概率计算.【跟踪训练】1.A,B,C三人将参加某项测试,三人能否达标互不影响,已知他们能达标的概率分别是,则三人都能达标的概率是_,三人

8、中至少有一人能达标的概率是_.2.某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100 m跑(互不影响)的成绩在13 s内(称为合格)的概率分别为,若对这三名短跑运动员的100 m跑的成绩进行一次检测,则(1)三人都合格的概率;(2)三人都不合格的概率;(3)出现几人合格的概率最大.1.在某次考试中,甲、乙通过的概率分别为0.7,0.4,若两人考试相互独立,则甲未通过而乙通过的概率为()A.0.28B.0.12C.0.42D.0.16【解析】选B.甲未通过的概率为0.3,则甲未通过而乙通过的概率为0.30.4=0.12.课堂检测素养达标2.袋内有3个白球和2个黑球,从中不放回地摸

9、球,用A表示“第一次摸得白球”,用B表示“第二次摸得白球”,则A与B是()A.互斥事件B.相互独立事件C.对立事件D.不相互独立事件【解析】选D.互斥事件是在一定条件下不可能同时发生的事件,故可判断A,B不互斥,则也不对立,事件A发生对事件B的概率有影响,故A与B是不相互独立事件.3.(教材二次开发:练习改编)打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则他们同时中靶的概率是()A.B.C.D.【解析】选A.因为甲每打10次可中靶8次,乙每打10次可中靶7次,所以P(甲)=,P(乙)=,所以他们都中靶的概率是P=.4.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是_.【解析】透镜落地3次,恰在第一次落地打破的概率为P1=0.3,恰在第二次落地打破的概率为P2=0.70.4=0.28,恰在第三次落地打破的概率为P3=0.70.60.9=0.378,所以落地3次以内被打破的概率P=P1+P2+P3=0.958.答案:0.9585.已知电路中有4个开关,每个开关独立工作,且闭合的概率为,求灯亮的概率.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1