1、小题狂练(44)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B. C. D. 【答案】B【解析】【分析】化简集合,按交集定义,即可求解.【详解】由,得,所以,故选:B【点睛】本题考查集合间的运算,属于基础题.2.已知复数z满足z(1+2i)=i,则复数在复平面内对应点所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】把已知等式变形,再由复数代数形式的乘除运算化简,求出的坐标得答案【详解】解:由,得,所以复数在复平面内对应的点的坐标为,在第四象限故选:D【点睛
2、】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题3.已知向量,则“m1”是“,夹角为钝角”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】【分析】由题意结合平面向量数量积的知识可得若,夹角为钝角,则且,再由且结合充分条件、必要条件的概念即可得解.【详解】若,夹角为钝角,则且,由可得,解得且,由且可得“m1”是“,夹角为钝角”的必要不充分条件.故选:B.【点睛】本题考查了利用平面向量数量积解决向量夹角问题,考查了充分条件、必要条件的判断,属于中档题.4.甲、乙、丙3人站到共有6级的台阶上,若每级台阶最多站
3、2人,同一级台阶上的人不区分站的位置,则不同的站法总数是( )A. 90B. 120C. 210D. 216【答案】C【解析】【分析】根据题意:分为两类:第一类,甲、乙、丙各自站在一个台阶上;第二类,有2人站在同一台阶上,剩余1人独自站在一个台阶上,算出每类的站法数,然后再利用分类计数原理求解.【详解】因为甲、乙、丙3人站到共有6级的台阶上,且每级台阶最多站2人,所以分为两类:第一类,甲、乙、丙各自站在一个台阶上,共有:种站法;第二类,有2人站在同一台阶上,剩余1人独自站在一个台阶上,共有:种站法;所以每级台阶最多站2人,同一级台阶上的人不区分站的位置的不同的站法总数是.故选:C【点睛】本题主
4、要考查排列组合的应用以及分类计数原理的应用,还考查了分析求解问题的能力,属于中档题.5.已知定义在上函数,则,的大小关系为( )A. B. C. D. 【答案】D【解析】【分析】先判断函数在时的单调性,可以判断出函数是奇函数,利用奇函数的性质可以得到,比较三个数的大小,然后根据函数在时的单调性,比较出三个数的大小.【详解】当时,函数在时,是增函数.因为,所以函数是奇函数,所以有,因为,函数在时,是增函数,所以,故本题选D.【点睛】本题考查了利用函数的单调性判断函数值大小问题,判断出函数的奇偶性、单调性是解题的关键.6.对n个不同的实数a1,a2,an可得n!个不同的排列,每个排列为一行写成一个
5、n!行的数阵.对第i行ai1,ai2,ain,记bi=ai1+2ai23ai3+(1)nnain,i=1,2,3,n!.例如用1,2,3可得数阵如图,对于此数阵中每一列各数之和都是12,所以bl+b2+b6=12+212312=24.那么,在用1,2,3,4,5形成的数阵中,b1+b2+b120等于( )A. 3600B. 1800C. 1080D. 720【答案】C【解析】【分析】根据用1,2,3,4,5形成的数阵和每个排列为一行写成一个n!行的数阵,得到数阵中行数,然后求得每一列各数字之和,再代入公式求解.【详解】由题意可知:数阵中行数为:,在用1,2,3,4,5形成的数阵中,每一列各数字
6、之和都是:,.故选:C【点睛】本题主要考查数列的应用,还考查了分析求解问题的能力,属于基础题.7.已知中,为所在平面上一点,且满足.设,则的值为( )A. 2B. 1C. D. 【答案】C【解析】分析】由由,得:点是的外心,由向量的投影的概念可得:,再代入运算,即可【详解】解:由,得:点是的外心,又外心是中垂线的交点,则有:,即,又,所以,解得:,即,故选:【点睛】本题考查了外心是中垂线的交点,投影的概念,平面向量的数量积公式,属中档题.8.在直三棱柱ABCA1B1C1中,ABBC,AB=BC=BB1=1,M是AC的中点,则三棱锥B1ABM的外接球的表面积为( )A. B. C. D. 【答案
7、】B【解析】【分析】根据题意找到三棱锥B1ABM的外接球球心为中点,即可求出其半径,则可求出其表面积.【详解】如图所示:取中点为,中点为.并连接,则平面,所以所以三棱锥B1ABM的外接球球心为中点.所以,所以三棱锥B1ABM的外接球的表面积为.故选:B【点睛】本题考查三棱锥的外接球表面积,属于基础题.解本题的关键在于画出三棱柱,找到三棱锥的外接球球心.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分;部分选对的得3分;有选错的得0分.9. 若复数,其中为虚数单位,则下列结论正确的是( )A. 的虚部为B. C. 为纯虚数D. 的共
8、轭复数为【答案】ABC【解析】【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A:的虚部为,正确;对于B:模长,正确;对于C:因为,故为纯虚数,正确;对于D:的共轭复数为,错误.故选:ABC.【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.10. 下列命题正确的是( )A. “”是“”的必要不充分条件B. 命题“,”的否定是“,”C. 若,则D. 设,“”,是“函数在定义域上是奇函数”的充分不必要条件【答案】BD【解析】【分析】根据不等式的性质可判
9、断A;根据含有量词的否定可判断B;根据基本不等式的适用条件可判断C;根据奇函数的性质可判断D.【详解】对于A,当时,可得,故“”是“”的充分条件,故A错误;对于B,由特称命题的否定是存在改任意,否定结论可知B选项正确;对于C,若时,故C错误;对于D,当时,此时,充分性成立,当为奇函数时,由,可得,必要性不成立,故D正确.故选:BD.【点睛】本题考查充分条件与必要条件,考查命题及其关系以及不等关系和不等式,属于基础题.11. 关于的说法,正确的是( )A. 展开式中的二项式系数之和为2048B. 展开式中只有第6项的二项式系数最大C. 展开式中第6项和第7项的二项式系数最大D. 展开式中第6项的
10、系数最小【答案】ACD【解析】【分析】根据二项式系数的性质即可判断选项A;由为奇数可知,展开式中二项式系数最大项为中间两项,据此即可判断选项BC;由展开式中第6项的系数为负数,且其绝对值最大即可判断选项D.【详解】对于选项A:由二项式系数的性质知,的二项式系数之和为,故选项A正确;因为的展开式共有项,中间两项的二项式系数最大,即第6项和第7项的二项式系数最大,故选项C正确,选项B错误;因为展开式中第6项的系数是负数,且绝对值最大,所以展开式中第6项的系数最小,故选项D正确;故选:ACD【点睛】本题考查利用二项式定理求二项展开式系数之和、系数最大项、系数最小项及二项式系数最大项;考查运算求解能力
11、;区别二项式系数与系数是求解本题的关键;属于中档题、常考题型.12. 如图直角梯形,为中点,以为折痕把折起,使点到达点的位置,且则( )A. 平面平面B. C. 二面角的大小为D. 与平面所成角的正切值为【答案】AC【解析】【分析】A中利用折前折后不变可知,根据可证,可得线面垂直,进而证明面面垂直;B选项中不是直角可知不垂直,故错误;C中二面角的平面角为,故正确;D中与平面所成角为,计算其正切值即可.【详解】A中, ,在三角形中,所以,又,可得平面,平面,所以平面平面,A选项正确;B中,若,又,可得平面,则,而,显然矛盾,故B选项错误;C中,二面角的平面角为,根据折前着后不变知,故C选项正确;
12、D中,由上面分析可知,为直线与平面所成角,在中,,故D选项错误.故选:AC【点睛】本题主要考查了线面垂直的判定,二面角,线面角的求法,属于中档题.三、填空题:本题共4小题,每小题5分,共20分.13. 从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为,则数学期望_.【答案】2【解析】【分析】的可能值为,计算概率得到分布列,再计算数学期望得到答案.【详解】的可能值为,则;.故分布列为:123故.故答案为:2.【点睛】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和应用能力.14. 如图,在正方体中,的中点为,的中点为,异面直线与
13、所成的角是_.【答案】【解析】【分析】取中点,连接,连接交于,可知即为异面直线与所成的角,求出即可.【详解】取中点,连接,连接交于,在正方体中,可知,四边形是平行四边形,即为异面直线与所成的角,可知在和中,,,,,即异面直线与所成的角为.故答案为:.【点睛】本题考查异面直线所成角的求法,属于基础题.15. 在展开式中,的系数为_.【答案】80【解析】分析】将原式化为,根据二项式定理,求出展开式中,的系数,即可得出结果.【详解】,二项式的展开式的第项为,令,则,令,则,则展开式中,的系数为.故答案为:.【点睛】本题主要考查求指定项的系数,熟记二项式定理即可,属于基础题型.16. 关于的方程在上有两个不相等的实根,则实数的取值范围_.【答案】【解析】【分析】分离参数,构造函数,利用导数讨论的单调性,再结合关于的方程在上有两个不相等的实根等价于与有两个交点,即可求出的取值范围.【详解】,设,设,即在是减函数,又,当时,即,当时,即,在为增函数,在为减函数,当时,关于的方程在上有两个不相等的实根等价于与有两个交点,由上可知,实数的取值范围为.故答案为:.【点睛】本题考查利用导数解决方程根的问题,属于较难题.