收藏 分享(赏)

高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt

上传人:a**** 文档编号:485703 上传时间:2025-12-08 格式:PPT 页数:20 大小:1,017.50KB
下载 相关 举报
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第1页
第1页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第2页
第2页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第3页
第3页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第4页
第4页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第5页
第5页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第6页
第6页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第7页
第7页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第8页
第8页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第9页
第9页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第10页
第10页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第11页
第11页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第12页
第12页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第13页
第13页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第14页
第14页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第15页
第15页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第16页
第16页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第17页
第17页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第18页
第18页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第19页
第19页 / 共20页
高中数学:2.1《参数方程的概念》课件(新人教A版选修4-4).ppt_第20页
第20页 / 共20页
亲,该文档总共20页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第二讲参数方程1、参数方程的概念(1)在取定的坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数,即并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程组就叫做这条曲线的参数方程,联系x、y之间关系的变数叫做参变数,简称参数。参数方程的参数可以是有物理、几何意义的变数,也可以是没有明显意义的变数。(2)相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程。并且对于的每一个允许值,由方程组所确定的点P(x,y),都在圆O上.5o思考1:圆心为原点,半径为r 的圆的参数方程?我们把方程组叫做圆心在原点、半径为r的圆的参数方

2、程,是参数.观察1观察2(a,b)r又所以(3)参数方程与普通方程的互化x2+y2=r2注:1、参数方程的特点是没有直接体现曲线上点的横、纵坐标之间的关系,而是分别体现了点的横、纵坐标与参数之间的关系。2、参数方程的应用往往是在x与y直接关系很难或不可能体现时,通过参数建立间接的联系。已知曲线C的参数方程是(1)判断点(0,1),(5,4)是否在上.(2)已知点(,a)在曲线上,求a.例1、已知圆方程x2+y2+2x-6y+9=0,将它化为参数方程。解:x2+y2+2x-6y+9=0化为标准方程,(x+1)2+(y-3)2=1,参数方程为(为参数)练习:1.填空:已知圆O的参数方程是(0 2

3、)如果圆上点P所对应的参数,则点P的坐标是A的圆,化为标准方程为(2,-2)1化为参数方程为把圆方程0142)2(22=+-+yxyxxMPAyO解:设M的坐标为(x,y),可设点P坐标为(4cos,4sin)点M的轨迹是以(6,0)为圆心、2为半径的圆。由中点公式得:点M的轨迹方程为 x=6+2cosy=2sinx=4cosy=4sin圆x2+y2=16的参数方程为例2.如图,已知点P是圆x2+y2=16上的一个动点,点A是x轴上的定点,坐标为(12,0).当点P在圆上运动时,线段PA中点M的轨迹是什么?观察3解:设M的坐标为(x,y),点M的轨迹是以(6,0)为圆心、2为半径的圆。由中点坐

4、标公式得:点P的坐标为(2x-12,2y)(2x-12)2+(2y)2=16即 M的轨迹方程为(x-6)2+y2=4点P在圆x2+y2=16上xMPAyO例2.如图,已知点P是圆x2+y2=16上的一个动点,点A是x轴上的定点,坐标为(12,0).当点P在圆上运动时,线段PA中点M的轨迹是什么?例3、已知点P(x,y)是圆x2+y2-6x-4y+12=0上动点,求(1)x2+y2 的最值,(2)x+y的最值,(3)P到直线x+y-1=0的距离d的最值。解:圆x2+y2-6x-4y+12=0即(x-3)2+(y-2)2=1,用参数方程表示为由于点P在圆上,所以可设P(3+cos,2+sin)(1

5、)x2+y2=(3+cos)2+(2+sin)2=14+4 sin+6cos=14+2 sin(+).(其中tan =3/2)x2+y2 的最大值为14+2 ,最小值为14-2 。(2)x+y=3+cos+2+sin=5+sin(+)x+y的最大值为5+,最小值为5-。(3)显然当sin(+)=1时,d取最大值,最小值,分别为,。例4、将下列参数方程化为普通方程:(1)(2)(3)x=t+1/ty=t2+1/t2(1)(x-2)2+y2=9(2)y=1-2x2(-1x1)(3)x2-y=2(X2或x-2)步骤:(1)消参;(2)求定义域。小 结:1、圆的参数方程2、参数方程与普通方程的概念3、圆的参数方程与普通方程的互化4、求轨迹方程的三种方法:相关点点问题(代入法);参数法;定义法5、求最值xyACBO

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1