ImageVerifierCode 换一换
格式:PPT , 页数:27 ,大小:1.22MB ,
资源ID:484774      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-484774-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高中数学必修3;古典概型课件.ppt)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

高中数学必修3;古典概型课件.ppt

1、考察两个试验:(1)抛掷一枚质地均匀的硬币的试验;(2)掷一颗质地均匀的骰子的试验.在这两个试验中,可能的结果分别有哪些?它们都是随机事件,我们把这类随机事件称为基本事件.基本事件:在一次试验中可能出现的每一个基本结果称为基本事件。基本事件基本事件的特点:(1)任何两个基本事件是互斥的(2)任何事件都可以表示成基本事件的和。练习1、把一枚骰子抛6次,设正面出现的点数为x1、求出x的可能取值情况2、下列事件由哪些基本事件组成(1)x的取值为2的倍数(记为事件A)(2)x的取值大于3(记为事件B)(3)x的取值为不超过2(记为事件C)例1 从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些

2、基本事件?解:所求的基本事件共有6个:A=a,b,B=a,c,C=a,d,D=b,c,E=b,d,F=c,d,1、有限性:一次试验中只有有限个基本事件2、等可能性:每个基本事件发生的可能性是相等的具有以上两个特征的试验称为古典概型。上述试验和例1的共同特点是:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。思考?1、若一个古典概型有 n 个基本事件,则每个基本事件发生的概率为多少?2、若某个随

3、机事件 A 包含 m 个基本事件,则事件A 发生的概率为多少?即例:同时抛掷三枚质地均匀的硬币呢?解:所有的基本事件共有个:正,正,正,正,正,反,正,反,正,正,反,反,反,正,正,反,正,反,反,反,正,反,反,反,同时抛掷两枚质地均匀的硬币的试验中,有哪些基本事件?A=正,正,B=正,反C=反,正,D=反,反掷一颗均匀的骰子,求掷得偶数点的概率。解:掷一颗均匀的骰子,它的样本空间是=1,2,3,4,5,6 n=6而掷得偶数点事件A=2,4,6m=3P(A)=例:题后小结:求古典概型概率的步骤:(1)判断试验是否为古典概型;(2)写出基本事件空间,求(3)写出事件,求(4)代入公式求概率例

4、3、同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)(4,1)(3,2)(2,3)(1,4)6543216543211号骰子2号骰子(2)在上面的结果中,

5、向上的点数之和为5的结果有4种,分别为:(1,4),(2,3),(3,2),(4,1)。(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,则从表中可以看出同时掷两个骰子的结果共有36种。为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?如果不标上记号,类似于(3,6)和(6,3)的结果将没有区别。为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?如果不标上记号,类似于(3,6)和(6,3)的结果将没有区别。(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)

6、(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)6543216543211号骰子2号骰子(4,1)(3,2)例2 单选题是标准化考试中常用的题型,一般是从A、B、C、D四个选项中选择一个正确答案。如果考生掌握了考察的内容,它可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D

7、,即基本事件只有4个,考生随机的选择一个答案是选择A、B、C、D的可能性是相等的,由古典概型的概率计算公式得:P(“答对”)=“答对”所包含的基本事件的个数4 =1/4=0.25探究在标准化的考试中既有单选题又有不定向选择题,不定项选择题从A、B、C、D四个选项中选出所有正确答案,同学们可能有一种感觉,如果不知道正确答案,更难猜对,试求不定项选择题猜对的概率。我们探讨正确答案的所有结果:如果只要一个正确答案是对的,则有4种;如果有两个答案是正确的,则正确答案可以是(A、B)(A、C)(A、D)(B、C)(B、D)(C、D)6种如果有三个答案是正确的,则正确答案可以是(A、B、C)(A、C、D)

8、(A、B、D)(B、C、D)4种所有四个都正确,则正确答案只有1种。正确答案的所有可能结果有464115种,从这15种答案中任选一种的可能性只有1/15,因此更难猜对。例4:假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,9十个数字中的任意一个。假设一个人完全忘记了自己的储蓄卡密码,问他到自动提款机上随机试一次密码就能取到钱的概率是多少?解:这个人随机试一个密码,相当做1次随机试验,试验的基本事件(所有可能的结果)共有10 000种,它们分别是0000,0001,0002,9998,9999.由于是随机地试密码,相当于试验的每一个结果试等可能的所以P(“试一次密码就能取到钱”)“试一

9、次密码就能取到钱”所包含的基本事件的个数100001/10000答:随机试一次密码就能取到钱概率是0.00010.0001例5:某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽取2听,检测出不合格产品的概率有多大?感受高考(2009天津卷文)为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂()求从A,B,C区中分别抽取的工厂个数;(1)解:工厂总数为18+27+18=63,样本容量与总体中的个体数比为所以从A,B,C三个区中应分别抽取的工厂个数为2,3,2.()若从抽取的7个工厂中随

10、机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率。在A区中抽得的2个工厂,为.在B区中抽得的3个工厂,为在C区中抽得的2个工厂,为.这7个工厂中随机的抽取2个,全部的可能结果有:随机的抽取的2个工厂至少有一个来自A区的结果有自我评价练习:(1)从一个不透明的口袋中摸出红球的概率为,已知袋中红球有3个,则袋中共有除颜色外完全相同的球的个数为()A.5 B.8 C.10 D.15D(2)一个口袋里装有2个白球和2个黑球,这4 个球除颜色外完全相同,从中摸出2个球,则1个是白球,1个是黑球的概率是()A.B.C.D.A(3)先后抛3枚均匀的硬币,至少出现一次正面的概率为()A.B.C.D.c1古典概型:我们将具有:(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等。(等可能性)这样两个特点的概率模型称为古典概率概型,简称古典概型。2古典概型计算任何事件的概率计算公式为:3求某个随机事件A包含的基本事件的个数和实验中基本事件的总数常用的方法是列举法注意做到不重不漏。小结

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1