ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:1.34MB ,
资源ID:472459      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-472459-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020高考人教版文科数学总复习课后作业:立体几何 课时7 课后作业 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020高考人教版文科数学总复习课后作业:立体几何 课时7 课后作业 WORD版含解析.doc

1、立体几何的综合应用1(2018全国卷)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点(1)证明:平面AMD平面BMC.(2)在线段AM上是否存在点P,使得MC平面PBD?说明理由 (1)证明:由题设知,平面CMD平面ABCD,交线为CD.因为BCCD,BC平面ABCD,所以BC平面CMD,故BCDM.因为M为上异于C,D的点,且DC为直径,所以DMCM.又BCCMC,所以DM平面BMC.而DM平面AMD,故平面AMD平面BMC.(2)当P为AM的中点时,MC平面PBD.证明如下:连接AC交BD于O.因为ABCD为矩形,所以O为AC中点连接OP,因为P为AM中点,所以MCO

2、P.又MC平面PBD,OP平面PBD,所以MC平面PBD.2(2016全国卷)如图,已知正三棱锥PABC的侧面是直角三角形,PA6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(1)证明:G是AB的中点;(2)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积 (1)证明:因为P在平面ABC内的正投影为D,所以ABPD.因为D在平面PAB内的正投影为E,所以ABDE.因为PDDED,所以AB平面PED,故ABPG.又由已知可得,PAPB,所以G是AB的中点(2)在平面PAB内,过点E作PB的平行线交PA于点F,

3、F即为E在平面PAC内的正投影理由如下:由已知可得PBPA,PBPC,又EFPB,所以EFPA,EFPC.又PAPCP,因此EF平面PAC,即点F为E在平面PAC内的正投影连接CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心由(1)知,G是AB的中点,所以D在CG上,故CDCG.由题设可得PC平面PAB,DE平面PAB,所以DEPC,因此PEPG,DEPC.由已知,正三棱锥的侧面是直角三角形且PA6,可得DE2,PE2.在等腰直角三角形EFP中,可得EFPF2,所以四面体PDEF的体积V222.3(2017全国卷)如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面

4、ABCD,ABBCAD, BADABC90.(1)证明:直线BC平面PAD;(2)若PCD的面积为2,求四棱锥PABCD的体积 (1)在平面ABCD内,因为BADABC90,所以BCAD.又BC平面PAD,AD平面PAD,故BC平面PAD.(2)如图,取AD的中点M,连接PM,CM.由ABBCAD及BCAD,ABC90得四边形ABCM为正方形,则CMAD.因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD平面ABCDAD,所以PMAD,PM底面ABCD.因为CM底面ABCD,所以PMCM.设BCx,则CMx,CDx,PMx,PCPD2x.如图,取CD的中点N,连接PN,则PNCD,所以

5、PNx.因为PCD的面积为2,所以xx2,解得x2(舍去)或x2.于是ABBC2,AD4,PM2.所以四棱锥PABCD的体积V24.4(2017全国卷)如图,四面体ABCD中,ABC是正三角形,ADCD.(1)证明:ACBD;(2)已知ACD是直角三角形,ABBD,若E为棱BD上与D不重合的点,且AEEC,求四面体ABCE与四面体ACDE的体积比 (1)如图,取AC的中点O,连接DO,BO.因为ADCD,所以ACDO.又由于ABC是正三角形,所以ACBO.BODOO,从而AC平面DOB,BD平面DOB,故ACBD.(2)连接EO.由(1)及题设知ADC90,所以DOAO.在RtAOB中,BO2AO2AB2.又ABBD,所以BO2DO2BO2AO2AB2BD2,故DOB90.由题设知AEC为直角三角形,所以EOAC.又ABC是正三角形,所以ACAB,又ABBD,所以EOBD.故E为BD的中点,从而E到平面ABC的距离为D到平面ABC的距离的,四面体ABCE的体积为四面体ABCD的体积的,即四面体ABCE与四面体ACDE的体积之比为11.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3