收藏 分享(赏)

《考前三个月》2015届高考数学(四川专用理科)必考题型过关练:第12练.docx

上传人:高**** 文档编号:467556 上传时间:2024-05-28 格式:DOCX 页数:10 大小:197.78KB
下载 相关 举报
《考前三个月》2015届高考数学(四川专用理科)必考题型过关练:第12练.docx_第1页
第1页 / 共10页
《考前三个月》2015届高考数学(四川专用理科)必考题型过关练:第12练.docx_第2页
第2页 / 共10页
《考前三个月》2015届高考数学(四川专用理科)必考题型过关练:第12练.docx_第3页
第3页 / 共10页
《考前三个月》2015届高考数学(四川专用理科)必考题型过关练:第12练.docx_第4页
第4页 / 共10页
《考前三个月》2015届高考数学(四川专用理科)必考题型过关练:第12练.docx_第5页
第5页 / 共10页
《考前三个月》2015届高考数学(四川专用理科)必考题型过关练:第12练.docx_第6页
第6页 / 共10页
《考前三个月》2015届高考数学(四川专用理科)必考题型过关练:第12练.docx_第7页
第7页 / 共10页
《考前三个月》2015届高考数学(四川专用理科)必考题型过关练:第12练.docx_第8页
第8页 / 共10页
《考前三个月》2015届高考数学(四川专用理科)必考题型过关练:第12练.docx_第9页
第9页 / 共10页
《考前三个月》2015届高考数学(四川专用理科)必考题型过关练:第12练.docx_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第12练函数的零点关键抓住破题题眼题型一函数零点所在区间问题例1函数f(x)ln 的零点所在的大致区间是()A(1,2) B(2,3)C(3,4) D(1,2)与(2,3)破题切入点确定函数在区间端点处函数值的符号是否相反,根据零点存在性定理判断零点所在区间答案B解析f(x)ln ln(x1),函数的定义域为(1,)当1x2时,ln(x1)0,所以f(x)0,故函数在(1,2)上没有零点f(2)ln 110,f(3)ln 2,因为22.828,所以e,故 ln eln ,即1ln 8,所以2ln 8,即f(3)0,f(4)ln 3ln 30.根据零点存在性定理,可知函数f(x)在(2,3)上必

2、存在零点,故选B.题型二函数零点个数问题例2已知f(x1)f(x1),f(x)f(x2),方程f(x)0在0,1内有且只有一个根x,则f(x)0在区间0,2 014内根的个数为()A1 006 B1 007 C2 013 D2 014破题切入点由条件推出f(x)是周期等于2的周期函数,且关于直线x1对称根据f()0,可得f()0,从而得到函数f(x)在一个周期内的零点个数,最后得到f(x)0在区间0,2 014内根的个数答案D解析由f(x1)f(x1),可知f(x2)f(x),所以函数f(x)的周期是2.由f(x)f(x2),可知函数f(x)关于直线x1对称,因为函数f(x)0在0,1内有且只

3、有一个根x,所以函数f(x)0在区间0,2 014内根的个数为2 014,故选D.题型三由函数零点求参数范围问题例3函数f(x)是定义在R上的偶函数,且满足f(x2)f(x)当x0,1时,f(x)2x.若在区间2,3上方程ax2af(x)0恰有四个不相等的实数根,则实数a的取值范围是_破题切入点由条件得出函数性质,准确画出图象,结合图象解决答案a解析由f(x2)f(x)得函数的周期是2.由ax2af(x)0得f(x)ax2a,设yf(x),yax2a,作出函数yf(x),yax2a的图象,如图,要使方程ax2af(x)0恰有四个不相等的实数根,则直线yax2aa(x2)的斜率满足kAHakAG

4、,由题意可知,G(1,2),H(3,2),A(2,0),所以kAH,kAG,所以a0,f(2)4sin 52,由于52,所以sin 50,故f(2)0,则函数在0,2上存在零点;由于f(1)4sin(1)10,而f(2)0,所以函数在2,4上存在零点选A.3定义在R上的奇函数f(x),当x0时,f(x)则关于x的函数F(x)f(x)a(0a1)的所有零点之和为()A12a B2a1C12a D2a1答案A解析当0x1时,f(x)0.由F(x)f(x)a0,画出函数yf(x)与ya的图象如图函数F(x)f(x)a有5个零点当1x0时,0x1,所以f(x)log0.5(x1)log2(1x),即f

5、(x)log2(1x),1x0.由f(x)log2(1x)a,解得x12a,因为函数f(x)为奇函数,所以函数F(x)f(x)a(0a0时,由f(x)0,即ln(x2x1)0,得x2x11,解得x0(舍去)或x1.当x0时,f(x)exx2,f(x)ex10,所以函数f(x)在(,0上单调递减而f(0)e00210,故函数f(x)在(2,0)上有且只有一个零点综上,函数f(x)只有两个零点5(2014课标全国)已知函数f(x)ax33x21,若f(x)存在唯一的零点x0,且x00,则a的取值范围是()A(2,) B(,2)C(1,) D(,1)答案B解析f(x)3ax26x,当a3时,f(x)

6、9x26x3x(3x2),图1则当x(,0)时,f(x)0;x(0,)时,f(x)0,注意f(0)1,f()0,则f(x)的大致图象如图1所示不符合题意,排除A、C.图2当a时,f(x)4x26x2x(2x3),则当x(,)时,f(x)0,x(0,)时,f(x)0时,有3个零点;当k0时,有4个零点;当k0时,f(f(x)1,综合图(1)分析,则f(x)t1(,)或f(x)t2(0,1)对于f(x)t1,存在两个零点x1,x2;对于f(x)t2,存在两个零点x3,x4.此时共计存在4个零点当k0,且a1),当2a3b4时,函数f(x)的零点x0(n,n1),nN*,则n_.答案2解析由于2a3

7、b4,故f(1)loga11b1b0,而0loga21,2b(2,1),故f(2)loga22b0,因此函数必在区间(2,3)内存在零点,故n2.8方程2xx23的实数解的个数为_答案2解析方程变形为3x22x()x,令y13x2,y2()x.如图所示,由图象可知有2个交点9已知函数f(x)2ax22x3.如果函数yf(x)在区间1,1上有零点,则实数a的取值范围为_答案解析若a0,则f(x)2x3,f(x)0x1,1,不合题意,故a0.下面就a0分两种情况讨论:(1)当f(1)f(1)0时,f(x)在1,1上至少有一个零点,即(2a5)(2a1)0,解得a.(2)当f(1)f(1)0时,f(

8、x)在1,1上有零点的条件是解得a.综上,实数a的取值范围为.10(2014天津)已知函数f(x)若函数yf(x)a|x|恰有4个零点,则实数a的取值范围为_答案1a0)当a2时,函数f(x)的图象与函数y1a|x|的图象有3个交点故a2.当ya|x|(x0)与y|x25x4|相切时,在整个定义域内,f(x)的图象与y1a|x|的图象有5个交点,此时,由得x2(5a)x40.由0得(5a)2160,解得a1,或a9(舍去),则当1a2时,两个函数图象有4个交点故实数a的取值范围是1a1,h(x)e3x3aex,x0,ln 2,求h(x)的极小值;(3)设F(x)2f(x)3x2kx(kR),若

9、函数F(x)存在两个零点m,n(0m0,2x2,当且仅当x时等号成立故(2x)min2,所以a2.(2)由(1)知,1a2.令ext,则t1,2,则h(t)t33at.h(t)3t23a3(t)(t)由h(t)0,得t或t(舍去),a(1,2,1,2,若1t,则h(t)0,h(t)单调递减;若0,h(t)单调递增故当t时,h(t)取得极小值,极小值为h()a3a2a.(3)设F(x)在(x0,F(x0)的切线平行于x轴,其中F(x)2ln xx2kx.结合题意,有得2ln (mn)(mn)k(mn)所以k2x0.由得k2x0.所以ln .设u(0,1),式变为ln u0(u(0,1)设yln

10、u(u(0,1),y0,所以函数yln u在(0,1)上单调递增,因此,yy|u10,即ln u0.也就是,ln ,此式与矛盾所以F(x)在(x0,F(x0)处的切线不能平行于x轴12(2014四川)已知函数f(x)exax2bx1,其中a,bR,e2.718 28为自然对数的底数(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间0,1上的最小值;(2)若f(1)0,函数f(x)在区间(0,1)内有零点,证明:e2a1.(1)解由f(x)exax2bx1,有g(x)f(x)ex2axb.所以g(x)ex2a.因此,当x0,1时,g(x)12a,e2a当a时,g(x)0,所以g(x)在

11、0,1上单调递增,因此g(x)在0,1上的最小值是g(0)1b;当a时,g(x)0,所以g(x)在0,1上单调递减,因此g(x)在0,1上的最小值是g(1)e2ab;当a时,令g(x)0得xln(2a)(0,1),所以函数g(x)在区间0,ln(2a)上单调递减,在区间(ln(2a),1上单调递增于是,g(x)在0,1上的最小值是g(ln(2a)2a2aln(2a)b.综上所述,当a时,g(x)在0,1上的最小值是g(0)1b;当a时,g(x)在0,1上的最小值是g(ln(2a)2a2aln(2a)b;当a时,g(x)在0,1上的最小值是g(1)e2ab.(2)证明设x0为f(x)在区间(0,1)内的一个零点,则由f(0)f(x0)0可知f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减则g(x)不可能恒为正,也不可能恒为负故g(x)在区间(0,x0)内存在零点x1.同理,g(x)在区间(x0,1)内存在零点x2,所以g(x)在区间(0,1)内至少有两个零点由(1)知,当a时,g(x)在0,1上单调递增,故g(x)在(0,1)内至多有一个零点当a时,g(x)在0,1上单调递减,故g(x)在(0,1)内至多有一个零点所以a0,g(1)e2ab0.由f(1)0,有abe10,g(1)1a0.解得e2a1.所以函数f(x)在区间(0,1)内有零点时,e2a1.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3