ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:158KB ,
资源ID:456960      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-456960-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《原创》江苏省2015届高三数学体艺午间小练及答案:解三角形与立体几何(16).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《原创》江苏省2015届高三数学体艺午间小练及答案:解三角形与立体几何(16).doc

1、高三体艺午间小练:解三角形与立体几何(16)1在DABC中,角A、B、C的对边分别为a、b、c,且角A、B都是锐角,a=6,b=5,.(1) 求和的值;(2) 设函数,求的值.2在ABC中,BAC90,B60,AB1,D为线段BC的中点,E、F为线段AC的三等分点(如图)将ABD沿着AD折起到ABD的位置,连结BC(如图)图图(1)若平面ABD平面ADC,求三棱锥B-ADC的体积;(2)记线段BC的中点为H,平面BED与平面HFD的交线为l,求证:HFl;(3)求证:ADBE.参考答案1(1) (2)【解析】试题分析:(1)在三角形ABC中,可以利用A,B角的正弦定理把A角的正弦值求出来,因为

2、A,B角都是锐角,所以利用正余弦之间的关系可以求出A,B角的余弦值,再根据三角形的三个内角和为,可得,则利用诱导公式和余弦的和差角公式即可利用A,B角的正余弦值来表示角C的余弦值.进而求的角c的余弦值.(2)把带入函数的解析式,利用诱导公式(奇变偶不变,符号看象限)可得,利用余弦值的二倍角公式可以利用角A的正弦值或者余弦值来求的,进而得到的值.试题解析:(1)由正弦定理,得. (3分)A、B是锐角, , (4分) , (5分)由 ,得 (6分) (7分) (8分)(2)由(1)知, (11分) (12分)考点:正余弦值的关系 正余弦值的和差角公式 诱导公式 余弦倍角公式2(1)(2)见解析(3

3、)见解析【解析】(1)解:在直角ABC中,D为BC的中点,所以ADBDCD.又B60,所以ABD是等边三角形取AD中点O,连结BO,所以BOAD.因为平面ABD平面ADC,平面ABD平面ADCAD,BO平面ABD,所以BO平面ADC.在ABC中,BAC90,B60,AB1,D为BC的中点,所以AC,BO.所以SADC1.所以三棱锥BADC的体积为VSADCBO.(2)证明:因为H为BC的中点,F为CE的中点,所以HFBE.又HF平面BED, BE平面BED,所以HF平面BED.因为HF平面HFD,平面BED平面HFDl,所以HFl.(3)证明:连结EO,由(1)知,BOAD.因为AE,AO,DAC30,所以EO.所以AO2EO2AE2.所以ADEO.又BO平面BEO,EO平面BEO,BOEOO,所以AD平面BEO.又BE平面BEO,所以ADBE.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3