1、20 1 3年高考模拟考试 数学(理工农医类) 2013.3 本试卷共4页,分第1卷(选择题)和第卷(非选择题)两部分共150分考试时间120分钟第1卷(选择题共60分)一、选择题:本大题共1 2小题,每小题5分,共60分在每小题给出的四个选项中, 只有一项是符合题目要求的1复数的共轭复数 (A) (B) (C) (D)【答案】B,所以,选B.2设集合,集合B为函数的定义域,则 (A) (B) (C)1,2) (D) (1,2【答案】D,由得,即,所以,所以选D.3已知直线平面,直线平面,则“”是“”的 (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既非充分也非必要条件【答
2、案】A当时,由平面得,又直线平面,所以。若,则推不出,所以“”是“”的充分不必要条件,选A.4设随机变量(3,1),若,则P(2X4)= ( A) ( B)lp (C)l-2p (D)【答案】C因为,所以P(2X0,只要或即可,所以或,由、求交,得,即实数a的取值范围是,选C.第卷 (非选择题共90分)二、填空题:本大题共4小题,每小题4分,共1 6分1 3已知双曲线的一条渐近线与直线垂直,则 双曲线的离心率等于 。【答案】双曲线的渐近线为。直线的斜率为。因为与直线垂直,所以,即。所以,即。1 4已知一圆柱内接于球O,且圆柱的底面直径与母线长均为2,则球为O的表面积为 。【答案】圆柱的底面直径
3、与母线长均为2,所以球的直径,即球半径为,所以球的表面积为。1 5在区间内随机取两个数a、b, 则使得函数有零点的概率 为 。【答案】函数有零点,则,即。又,做出对应的平面区域为,当时,即三角形OBC的面积为,所以由几何概型可知函数有零点的概率为。1 6现有一根n节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为 10cm,最下面的三节长度之和为114cm,第6节的长度是首节与末节长度的等比中 项,则n= 。【答案】16设对应的数列为,公差为。由题意知,。由得,解得,即,即,解得,所以,即,解得。三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤17(本小题满
4、分12分) 已知函数其图象的两个相邻对称中心的距离为,且过点 (I) 函数的达式; ()在ABC中a、b、c分别是角A、B、C的对边,角C为锐角。且满,求c的值1 8(本小题满分12分)某电视台举办有奖竞答活动,活动规则如下:每人最多答4个小题;答题过程中,若答对则继续答题,答错则停止答题;答对每个小题可得1 0分,答错得0分甲、乙两人参加了此次竞答活动,且相互之间没有影响已知甲答对每个题的概率为,乙答对每个题的概为 ( I )设甲的最后得分为X,求X的分布列和数学期望;()求甲、乙最后得分之和为20分的概率1 9(本小题满分1 2分) 如图,四边形ABCD中,,ADBC,AD =6,BC =
5、4,AB =2,点E,F分别在BC,AD上,且E为BC中点,EFAB。现将四边形ABEF沿EF折起,使二面角等于 ( I )设这P为AD的中点,求证:CP平面ABEF;()求直线AF与平面ACD所成角的正弦值20(本小题满分12分) o, 已知数列的各项排成如图所示的三角形数阵,数阵中每一行的第一个数构成等差数列,是的前n项和,且 ( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知,求的值; ()设,当时,对任意,不等式恒成立,求t的取值范围21(本小题满分12分) 如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M必在点N的右侧),且椭圆D:的焦距等于,且过点( I ) 求圆C和椭圆D的方程; () 设椭圆D与x轴负半轴的交点为P,若过点M的动直线与椭圆D交于A、B两点,是否恒成立?给出你的判断并说明理由22(本小题满分14分) 设函数,其中 ( I )若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值; ()当时,设,讨论的单调性; ()在(I)的条件下,设,曲线上是否存在两点P、Q,使OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由