1、不等式讲选11三、解答题:1.(本小题满分12分)()设证明,(),证明.()设,由换底公式得,故要证:只要证明:,其中,由()知所要证明的不等式成立。【解题指导】:证明不等式常规的方法有分析法,综合法,作差法和作商法,无论哪种方法不等式性质和代数式恒定变形是处理这类问题的关键。第二问的处理很有艺术性,借助第一问题的结论巧妙地解决了,这也是一题多问的问题解决常规思路,前面的问题结论对后面问题解决常常有提示作用。2(本小题满分14分)在平面直角坐标系xOy上,给定抛物线L:实数p,q满足,x1,x2是方程的两根,记。(1)过点作L的切线教y轴于点B证明:对线段AB上任一点Q(p,q)有(2)设M
2、(a,b)是定点,其中a,b满足a2-4b0,a0过M(a,b)作L的两条切线,切点分别为,与y轴分别交与F,F。线段EF上异于两端点的点集记为X证明:M(a,b) X;(3)设D= (x,y)|yx-1,y(x+1)2-当点(p,q)取遍D时,求的最小值 (记为)和最大值(记为)1)先证:()设当当()设当注意到 (3)求得的交点而是的切点为的切线,且与轴交于,由()线段Q1Q2,有当在(0,2)上,令3. (本小题满分14分)()已知函数,求函数的最大值;()设均为正数,证明:(1)若,则;(2)若,则本题主要考查函数、导数、不等式的证明等基础知识,同时考查综合运用数学知识进行推理论证的能力,以及化归与转化的思想. 解析:()的定义域为,令,解得,当时,在(0,1)内是增函数;当时,在内是减函数;故函数在处取得最大值()(1)由()知,当时,有,即,从而有,得,求和得,即.