ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:1,014.50KB ,
资源ID:441755      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-441755-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(广西钦州市2019-2020学年高二数学下学期期末考试教学质量监测试题 理(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

广西钦州市2019-2020学年高二数学下学期期末考试教学质量监测试题 理(含解析).doc

1、广西钦州市2019-2020学年高二数学下学期期末考试教学质量监测试题 理(含解析)(考试时间:120分钟:赋分:150分)第卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,有且只有一项是符合题目要求的.(温馨提示:请在答题卡上作答,在本试卷上作答无效.)1. 是虚数单位,复数( )A. B. C. D. 【答案】B【解析】【分析】直接由复数的除法运算可得解.【详解】复数,故选:B.【点睛】本题主要考查了复数的除法运算,属于基础题.2. 在直角坐标系中,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,则极坐标为的点对应的直角坐标为( )A. B. C. (D.

2、 【答案】B【解析】【分析】直接利用极坐标和直角坐标之间转换求出结果【详解】,极坐标为的点对应的直角坐标为故选:B【点睛】本题考查直角坐标和极坐标之间的转换,主要考查学生的运算能力和转换能力及思维能力,属于基础题型3. 用反证法证明命题“,若,则,至少有一个大于0”,证明的第一步的正确表述是( )A. 假设,全都大于0B. 假设,至少有一个小于或等于0C. 假设,全都小于或等于0D. 假设,至多有一个大于0【答案】C【解析】【分析】利用反证法的定义分析判断得解.【详解】用反证法证明命题“,若,则,至少有一个大于0”时,假设的内容应该是对结论的否定,即:假设,全都小于或等于0.故选:C.【点睛】

3、本题主要考查反证法,意在考查学生对该知识的理解掌握水平,属于基础题.4. 某次抽奖活动中,参与者每次抽中奖的概率均为,现甲参加3次抽奖,则甲恰好有一次中奖的概率为( )A. B. C. D. 【答案】C【解析】【分析】本题根据独立重复试验直接计算概率即可.【详解】因为参与者每次抽中奖的概率均为,则甲参加3次抽奖,甲恰好有一次中奖的概率为.故选:C.【点睛】本题考查独立重复试验求概率的问题,是基础题.5. 已知曲线在点处的切线与直线垂直,则的值为( )A. 2B. 0C. 1D. 2【答案】D【解析】【分析】求出,再利用即可求解.【详解】由,则,解得.故选:D【点睛】本题考查了导数的几何意义,解

4、题的关键是求出导函数,考查了基本运算能力,属于基础题.6. 项展开式中的常数项为( )A. 120B. 120C. 160D. 160【答案】C【解析】【分析】先求出二项展开的通项公式,令的指数为0,即可得常数项.【详解】展开式的通项公式为:,令,解得,所以常数项为.故选:C.【点睛】本题主要考查了二项式展开的通项公式,牢记公式是解题的关键,属于基础题.7. 在一次共有10000名考生参加的毕业水平测试中,这些学生的数学成绩服从正态分布,且,若此次测试成绩大于或等于90分的定为“等级”成绩,据此估计,此次测试中获得“等级”成绩的学生人数为( )A. 1000人B. 2000人C. 3000人D

5、. 4000人【答案】B【解析】【分析】利用正态分布的对称性即可求解.【详解】依题意,根据正态分布的对称性,所以“等级”成绩的学生人数为:.故选:B【点睛】本题考查了正态分布的性质,考查了基本运算能力,属于基础题.8. 为研究某种细菌在特定环境下随时间变化的繁殖情况,得到如下实验数据:天数(天)3456繁殖个数(千个)2.5344.5由最小二乘法得与的线性回归方程为,则样本在(4,3)处的残差为( )A. 0.15B. 0.15C. 0.25D. 0.25【答案】A【解析】【分析】求出样本中心,进而求出,最后根据残差的定义进行求解即可.【详解】因为,所以有,当时,所以样本在(4,3)处的残差为

6、:.故选:A【点睛】本题考查了样本残差的求法,属于基础题.9. 是直线上的动点,是曲线C:(为参数)上的动点,则的最小值是( )A B. C. D. 【答案】C【解析】【分析】设点,利用点到直线的距离公式,结合三角函数的性质,即可求解.【详解】由曲线C:(为参数)消去参数,设点,则点到直线的距离为,当时,.故选:C.【点睛】本题主要考查曲线的参数方程,点到直线的距离公式,以及三角函数的恒等变换和余弦函数的性质的应用,着重考查运算与求解能力,以及转换能力,属于基础题.10. 为提高市区的防疫意识,某医院从3名男医生和4名女医生中选派3名医生组成防控宣传组,要求男女医生各占至少一名,则不同的方案共

7、有( )A. 24种B. 30种C. 32种D. 36种【答案】B【解析】【分析】分情况:男女或男女,再利用组合即可求解.【详解】根据题意可知男女医生各占至少一名,有两种情况:男女,共有,男女,共有,所以不同的方案共有:,故选:B【点睛】本题考查了计数原理、组合数的应用,属于基础题.11. 不等式恒成立,则的取值范围是( )A. B. C. D. )【答案】A【解析】【分析】利用绝对值三角不等式求得的最小值,由此可得出关于实数的不等式,进而可解得实数的取值范围.【详解】由绝对值三角不等式可得,当时等号成立,由于不等式恒成立,则,解得.因此,实数的取值范围是.故选:A.【点睛】本题考查利用绝对值

8、不等式恒成立求参数,考查了绝对值三角不等式的应用,考查计算能力,属于中等题.12. 设三次函数的导函数为,函数的图象的一部分如图所示,则正确的是( )A. 的极大值为,极小值为B. 的极大值为,极小值为C. 的极大值为,极小值为D. 的极大值为,极小值为【答案】C【解析】【分析】由的图象可以得出在各区间的正负,然后可得在各区间的单调性,进而可得极值.【详解】由图象可知:当和时,则;当时,则;当时,则;当时,则;当时,则.所以在上单调递减;在上单调递增;在上单调递减.所以的极小值为,极大值为.故选C.【点睛】本题考查导数与函数单调性的关系,解题的突破点是由已知函数的图象得出的正负性.第卷二、填空

9、题:本大题共4小题,每小题5分,共20分.13. 不等式的解集为_.【答案】【解析】【分析】根据绝对值定义化简求解,即得结果.详解】,不等式的解集为.故答案为:.【点睛】本题考查解含绝对值不等式,考查基本分析求解能力,属基础题.14. 已知为虚数单位,复数满足,则_.【答案】【解析】【分析】根据复数模的运算公式,求得.【详解】依题意,所以.故答案为:【点睛】本小题主要考查复数模的计算,属于基础题.15. 在一个暗箱中装有5个形状大小完全一样的小球,其中有个红球,其余的全为黑球,若从暗箱中任取2个小球,两个小球不同颜色的概率为,则的值为_.【答案】或;【解析】【分析】所有的取法共有种,而取出的两

10、个球颜色不同的取法有种,由此求得取出的两个球颜色不同的概率,即可得出的值.【详解】从暗箱中任取2个小球,两个小球不同颜色的概率为:,解得:或3,故答案为:或.【点睛】本题主要考查古典概率及其计算公式的应用,属于基础题.16. 如图,现有一个圆锥形的铁质毛坯材料,底面半径为6,高为8.某工厂拟将此材料切割加工成一个圆柱形构件,并要求此材料的底面加工成构件的一个底面,则可加工出该圆柱形构件的最大体积为_.【答案】【解析】【分析】利用几何体的轴截面进行计算,结合导数求得圆柱形构件的最大体积.【详解】画出圆锥及圆柱的轴截面如下图所示.其中,四边形为矩形.设圆柱的底面半径为,即,则,即.所以圆柱的体积为

11、,.,由于,所以在区间上,单调递增;区间上,单调递减.所以在处取得极大值也即是最大值为:.故答案为:【点睛】本小题主要考查圆锥的最大内接圆柱有关计算,考查利用导数求最值,属于中档题.三、解答题:本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 证明:【答案】证明见解析.【解析】【分析】利用题意,由分析法,原问题等价于,结合题意进行计算即可证得结论.【详解】证明:要证只需证只需证只需证只需证因为成立,所以.【点睛】本题考查分析法证明不等式,考查学生的逻辑推理能力,是一道容易题.18. 为了预防新型冠状病毒疫病.某生物疫苗研究所加紧对疫苗进行研究,将某一型号的疫苗用在动物小白

12、鼠身上进行科研和临床实验,得到统计数据如下:未感染病毒感染病毒总计未注射疫苗20注射疫苗30总计5050100现从所有感染病毒的小白鼠中随机抽取一只,抽到“注射疫苗”小白鼠的概率为(1)完成如图的22列联表:未感染病毒感染病毒总计未注射疫苗20注射疫苗30总计5050100(2)能否有99%把握认为注射此种疫苗对预防新型冠状病毒有效?已知,0.050.010.0053.8416.6357.879【答案】(1)填表见解析;(2)有把握认为注射此种疫苗对预防新型冠状病毒有效.【解析】【分析】(1)由题意可得,则,然后依次求出,由此可得列联表;(2)根据公式求得,再与比较大小即可求出答案【详解】解:

13、(1)所有感染病毒的小白鼠共有50只,其中注射疫苗的共有只,列联表如下:未感染病毒感染病毒总计未注射疫苗204060注射疫苗301040总计5050100(2),有把握认为注射此种疫苗对预防新型冠状病毒有效【点睛】本题主要考查独立性检验的应用,属于基础题19. 某加工厂为了检查一条产品生产流水线的生产情况,随即抽取该流水线上生产的20件产品作为样本,测量它们的尺寸(单位:)统计如下表:尺寸(单位:)样本频率(200,2050.15(205,2100.20(210,2150.35(215,2200.25(220,2250.05根据产品尺寸,规定尺寸超过且不超过的产品为“一等品”,其余尺寸为“非一

14、等品”.(1)在抽取的样本产品中,求产品为“一等品”的数量.(2)流水线生产的产品较多,将样本频率视为总体概率,现从该流水线上任取5件产品,求恰有3件产品为“非一等品”的概率.【答案】(1)12(件);(2).【解析】【分析】(1)由表格可求得样本产品为“一等品”的频率,计算即可得出产品为“一等品”的数量.(2)设5件产品中取到“非一等品”的件数为,由题意可得,根据公式计算即可得出结果.【详解】解:(1)由题意,样本产品为“一等品”的频率为,所以样本产品为“一等品”的数量为(件).(2)由题意,流水线上任取件产品为“非一等品”的概率为.设取到“非一等品”的件数为由已知,故,恰有件产品为“非一等

15、品”的概率.【点睛】本题考查概率的计算,考查独立重复试验二项分布的概率的计算,考查运算求解能力,属于基础题.20. 在直角坐标系中,直线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求极坐标方程;(2)若圆的极坐标方程为,直线的极坐标方程为,设、分别为与、的交点,且、与原点不重合,求.【答案】(1);(2).【解析】【分析】(1)利用可得解;(2)将代入两个曲线的极坐标方程,可得,由可得解.【详解】(1),的极坐标方程为.(2)直线的极坐标方程为,.【点睛】本题主要考查了极坐标方程求长度问题,属于基础题.21. 已知函数.(1)当时,求不等式的解集:(2)当时,恒成立,求的取值范围.

16、【答案】(1);(2).【解析】【分析】(1)根据绝对值不等式的解法,分当,三类情况讨论即可得答案;(2)当时,故恒成立转化为恒成立,再根据恒成立求解即可.【详解】解:(1)当时,.当时,原不等式可化为解得;当时,原不等式可化为解得;当时,不等式可化为解得;综上,原不等式的解集为(2)当时,由恒成立得恒成立, ,解得, 的取值范围为.【点睛】本题考查分类讨论法解绝对值不等式,不等式恒成立问题求参数范围,是中档题.22. 已知函数,其中(1)当时,求曲线在点处的切线方程:(2)若函数存在最小值为,且恒成立,求取值范围.【答案】(1);(2).【解析】【分析】(1)求出切点以及切点处的导数,再利用导数的几何意义即可求解.(2)求出,讨论或,判断函数的的单调性,利用单调性求出函数的最小值,再利用导数求出的最大值即可.【详解】解:(1)时,切线斜率曲线在点处的切线方程为:,曲线在点处的切线方程为(2)当时,恒成立在单调递增,无最小值当时,由得或(舍)时,在单调递减时,在单调递增所以存在最小值,由得,易知在单调递增,在单调递减所以的最大值为又恒成立,取值范围为.【点睛】本题考查了导数的几何意义、利用导数求函数的最值,利用导数研究不等式恒成立问题,属于难题.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3