ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:299KB ,
资源ID:431746      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-431746-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2012年高三数学第一轮复习教案(新人教A)轨迹问题.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2012年高三数学第一轮复习教案(新人教A)轨迹问题.doc

1、8.5 轨迹问题巩固夯实基础 一、自主梳理 1.曲线与方程的关系 曲线C 方程f(x,y)=0. 2.求轨迹方程的基本方法 直接求;代入(相关点)法;参数法;定义法;待定系数法. 二、点击双基1.动点P到直线x=1的距离与它到点A(4,0)的距离之比为2,则P点的轨迹是 ( )A.中心在原点的椭圆 B.中心在(5,0)的椭圆C.中心在原点的双曲线 D.中心在(5,0)的双曲线答案:B2.若动圆与圆(x+2)2+y2=4外切,且与直线x=2相切,则动圆圆心的轨迹方程是( )A.y2+8x=0 B.y2-8x=0 C.y2-12x+12=0 D.y2+12x-12=0解析:定义法.动圆圆心到定圆圆

2、心(-2,0)与到直线x=4的距离相等(都是动圆的半径),p=6. y2=12(x-1),即选C.答案:C3.平面直角坐标系中,O为坐标原点,两点A(3,1)、B(-1,3),若点C满足=+,其中、R,且+=1,则点C的轨迹方程为( )A.3x+2y-11=0 B.(x-1)2+(y-1)2=5 C.2x-y=0 D.x+2y-5=0解析:直接代入法.设C(x,y), (x,y)=(3,1)+(-1,3). 利用+=1,消去、得x+2y=5.答案:D4.F1、F2为椭圆+=1的左、右焦点,A为椭圆上任一点,过焦点F1向F1AF2的外角平分线作垂线,垂足为D,则点D的轨迹方程是_.解析:延长F1

3、D与F2A交于B,连结DO,可知DO=F2B=2,动点D的轨迹方程为x2+y2=4.答案:x2+y2=45.已知A(0,7)、B(0,-7)、C(12,2),以C为一个焦点作过A、B的椭圆,椭圆的另一个焦点F的轨迹方程是( )A.y2-=1(y-1) B.y2-=1 C.y2-=-1 D.x2-=1解析:由题意AC=13,BC=15,|AB|=14, 又|AF|+|AC|=|BF|+|BC|, AF-BF=BC-AC=2. 故F点的轨迹是以A、B为焦点,实轴长为2的双曲线下支. 又c=7,a=1,b2=48, 所以轨迹方程为y2-=1(y-1).答案:A诱思实例点拨【例1】 求过点(0,2)的

4、直线被椭圆x2+2y2=2所截弦的中点的轨迹方程.解:设直线方程为y=kx+2, 把它代入x2+2y2=2, 整理得(2k2+1)x2+8kx+6=0. 要使直线和椭圆有两个不同交点,则0,即k-或k. 设直线与椭圆两个交点为A(x1,y1)、B(x2,y2),中点坐标为C(x,y),则 x=-,y=-=. 从参数方程(k-或k),消去k得x2+2(y-1)2=2, 且x,0y【例2】 在PMN中,tanPMN= ,tanMNP=-2,且PMN的面积为1,建立适当的坐标系,求以M、N为焦点,且过点P的椭圆的方程.剖析:如下图,以直线MN为x轴,线段MN的垂直平分线为y轴,建立平面直角坐标系,则

5、所求椭圆方程为+=1.显然a2、b2是未知数,但a2、b2与已知条件没有直接联系,因此应寻找与已知条件和谐统一的未知元,或改造已知条件.解法一:如下图,过P作PQMN,垂足为Q, 令|PQ|=m,于是可得 |MQ|=|PQ|cotPMQ=2m, |QN|=|PQ|cotPNQ=m. |MN|=|MQ|-|NQ|=2m-m=m. 于是SPMN=|MN|PQ|=mm=1. 因而m=,|MQ|=2,|NQ|=,|MN|=. |MP|= = =, |NP|= = =. 以MN的中点为原点,MN所在直线为x轴建立直角坐标系,设椭圆方程为+=1(ab0). 则2a=|MP|+|NP|=, 2c=|MN|=

6、, 故所求椭圆方程为+=1.解法二:设M(-c,0)、N(c,0),P(x,y),y0, 则 解之,得x=,y=,c=. 设椭圆方程为b2x2+a2y2=a2b2,则 解之,得a2=,b2=3. (以下略)讲评:解法一选择了与a较接近的未知元|PM|、|PN|,但需改造已知条件,以便利用正弦定理和面积公式;解法二以条件为主,选择了与条件联系最直接的未知元x、y、c.本题解法较多,但最能体现方程思想方法的、学生易于理解和接受的是这两种解法.链接拓展 若把PMN的面积为1改为=,求椭圆方程. 提示:由tanPMN=,tanMNP=-2,易得sinMPN=,cosMPN=. 由=,得|=. 易求得|

7、PM|=,|PN|=. 进而求得椭圆方程为+=1.【例3】 (2005江苏高考)如图,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得PM=2PN,试建立适当的坐标系,并求动点P的轨迹方程.剖析:此题是以O1O2所在直线为x轴,线段O1O2的垂直平分线为y轴建立平面直角坐标系,把PM、PN的关系转化为PO1与PO2的关系,这样就把P、M、N三个动点问题转化为关于一个动点P的问题.解:作直线O1O2,以直线O1O2为x轴,线段O1O2的垂直平分线为y轴,连结O1M、O2N,设P点坐标为(x,y). PM、PN分别为O1、O2的切线,

8、 O1MPM,O2NPN. PO1M,PO2N为直角三角形. PO12=PM2+O1M2=PM2+1, PO22=PN2+O2N2=PN2+1. PM=PN, PM2=2PN2. PO12=2PN2+1, 2PO22=2(PN2+1)=2PN2+2. 由-得2PO22-PO12=1. PO22=(x-2)2+y2,PO12=(x+2)2+y2, 2(x-2)2+y2-(x+2)2+y2=1. 2x2-8x+8+2y2-x2-4x-4-y2-1=0. x2-12x+y2+3=0. (x-6)2+y2=33.讲评:正确建系是解好本题的首要任务,用PM、PN来表示PO1、PO2是本题的核心,这样就把三个动点问题转化为只关于一个动点P的问题.体现出转化思想的重要性,转化时用到了消去变量PM、PN的方法.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3