1、高考资源网() 您身边的高考专家课时跟踪检测(六) 数列的通项公式与递推公式A级学考水平达标1已知数列an的首项为a11,且满足an1an,则此数列的第4项是()A1B.C. D.解析:选B由a11,a2a11,依此类推a4.2在递减数列an中,ankn(k为常数),则实数k的取值范围是()AR B(0,)C(,0) D(,0解析:选Can是递减数列,an1ank(n1)knk0.3数列an中,a11,对所有的n2,都有a1a2a3ann2,则a3a5等于()A.B.C.D.解析:选C由题意a1a2a332,a1a222,a1a2a3a4a552,a1a2a3a442,则a3,a5.故a3a5
2、.4已知数列an满足要求a11,an12an1,则a5等于()A15 B16C31 D32解析:选C数列an满足a11,an12an1,a22113,a32317,a427115,a5215131.5由1,3,5,2n1,构成数列an,数列bn满足b12,当n2时,bna,则b6的值是()A9 B17C33 D65解析:选Cbna,b2aa23,b3aa35,b4aa59,b5aa917,b6aa1733.6已知数列an满足a1,an1an,得an_.解析:由条件知,分别令n1,2,3,n1,代入上式得n1个等式,即.又a1,an.答案:7数列an的通项公式为ann26n,则它最小项的值是_解
3、析:ann26n(n3)29,当n3时,an取得最小值9.答案:98已知数列an,anbnm(b0,nN*),满足a12,a24,则b_,a3_.解析:an(1)n3,a3(1)332.答案:129根据下列条件,写出数列的前四项,并归纳猜想它的通项公式(1)a10,an1an2n1(nN*);(2)a11,an1an(nN*);(3)a12,a23,an23an12an(nN*)解:(1)a10,a21,a34,a49.猜想an(n1)2.(2)a11,a2,a3,a4.猜想an.(3)a12,a23,a35,a49.猜想an2n11.10已知数列an中,a11,当nN且n2时,(2n1)an
4、(2n3)an1,求通项公式an.解:当n2,(2n1)an(2n3)an1,.,an,当n1时符合上式,an,nN*.B级高考能力达标1若数列an满足an1(nN*),且a11,则a17()A13B14C15 D16解析:选A由an1an1an,a17a1(a2a1)(a3a2)(a17a16)11613,故选A.2在数列an中,a12,an1anlg,则an()A2lg n B2(n1)lg nC2nlg n D1nlg n解析:选A由an1anlgan1anlg,那么ana1(a2a1)(anan1)2lg 2lg lg lg 2lg2lg n.3已知数列an,an2n2n,若该数列是递
5、减数列,则实数的取值范围是()A(,3 B(,4C(,5) D(,6)解析:选D依题意,an1an2(2n1)0,即2(2n1)对任意的nN*恒成立注意到当nN*时,2(2n1)的最小值是6,因此6,即的取值范围是(,6)4已知函数f(x)若数列an满足a1,an1f(an),nN*,则a2 018a2 019等于()A4 B1C. D.解析:选Ba2f1;a3f1;a4f;a5f21;a6f21;即从a3开始数列an是以3为周期的周期数列a2 018a2 019a5a31.故选B.5若数列an满足(n1)an(n1)an1,且a11,则a100_.解析:由(n1)an(n1)an1,则a10
6、0a115 050.答案:5 0506已知数列an满足:a1m(m为正整数),an1若a61,则m所有可能的取值为_解析:若a5为奇数,则3a511,a50(舍去)若a5为偶数,则1,a52.若a4为奇数,则3a412,a4(舍去)若a4为偶数,则2,a44.若a3为奇数,则3a314,a31,则a22,a14.若a3为偶数,则4,a38.若a2为奇数,则3a218,a2(舍去)若a2为偶数,则8,a216.若a1为奇数,则3a1116,a15.若a1为偶数,则16,a132.答案:4,5,327已知数列an的通项公式为an(nN*),则这个数列是否存在最大项?若存在,请求出最大项;若不存在,请说明理由解:存在最大项理由:a1,a21,a3,a41,a5,.当n3时,21,an1an,即n3时,an是递减数列又a1a3,a2a3,ana3.当n3时,a3为这个数列的最大项8已知数列an满足a1,anan1an1an(n2),求数列an的通项公式解:anan1an1an,1.211n1.n1,an(n2)又n1时,a1,符合上式,an.- 5 - 版权所有高考资源网