1、3.3 磁场对载流导体的作用331、安培力一段通电直导线置于匀磁场中,通电导线长L,电流强度为I,磁场的磁感应强度为B,电流I和磁感强度B图3-3-1间的夹角为,那么该导线受到的安培力为电流方向与磁场方向平行时,或,F=0,电流方向与磁场方向垂直时,安培力最大,F=BIL。安培力方向由左手定则判断,它一定垂直于B、L所决定的平面。当一段导电导线是任意弯曲的曲线时,如图3-3-1所示可以用连接导线两端的直线段的长度作为弯曲导线的等效长度,那么弯曲导线缩手的安培力为332、安培的定义如图3-3-2所示,两相距为a的平行长直导线分别载有电流和。载流导线1在导线2处所产生的磁感应强度为 ,方向如图示。
2、 I1I212B12B21图3-3-2导线2上长为的线段所受的安培力为:=其方向在导线1、2所决定的平面内且垂直指向导线1,导线2单位长度上所受的力同理可证,导线l上单位长度导线所受力也为。方向垂直指向2,两条导线间是吸引力。也可证明,若两导线内电流方向相反,则为排斥力。国际单位制中,电流强度的单位安培规定为基本单位。安培的定义规定为:放在真空中的两条无限长直平行导线,通有相等的稳恒电流,当两导线相距1米,每一导线每米长度上受力为2牛顿时,各导线上的电流的电流强度为1安培。333、安培力矩如图3-3-3所示,设在磁感应强度为B的均匀磁场中,有一刚性长方形平面载流线图,边长分别为图3-3-3L和
3、L,电流强度为I,线框平面的法线与之间的夹角为,则各边受力情况如下: 方向指向读者 方向背向读者 方向向下 方向向上和大小相等,方向相反且在一条直线上,互相抵消。和大小相等,指向相反,但力作用线不在同一直线上,形成 图3-3-4一力偶,力臂从(b)中可看出为故作用在线圈上的力矩为: 而为线圈面积S,故 我们称面积很小的载流线圈为磁偶极子,用磁偶极矩来描绘它。其磁偶极矩的大小为平面线圈的面积与所载电流的电流强度之乘积,即,其方向满足右手螺旋法则,即伸出右手,四指绕电流流动方向旋转,大拇指所指方向即为磁偶极矩的方向,如图3-3-4中的方向,则角即为磁偶极矩与磁感应强度的正方向的夹角。这样,线圈所受
4、力矩可表为我们从矩形线圈推出的公式对置于均匀磁场中的任意形状的平面线圈都适合。典型例题 例1 距地面h高处1水平放置距离为L的两条光滑金属导轨,跟导轨正交的水平方向的线路上依次有电动势为的电池,电容为C的电容器及质量为m的金属杆,如图3-3-5,单刀双掷开关S先接触头1,再扳过接触头2,由于空间有竖直向下的强度为B的匀强磁场,使得金属杆水平向右飞出做平抛运动。测得其水平射程为s,问电容器最终的带电量是多少?图3-3-5分析:开关S接1,电源向电容器充电,电量。S扳向2,电容器通过金属杆放电,电流通过金属杆,金属杆受磁场力向右,金属杆右边的导轨极短,通电时间极短,电流并非恒定,力也就不是恒力。因
5、此不可能精确计算每个时刻力产生的效果,只能关心和计算该段短时间变力冲量的效果,令金属杆离开导轨瞬间具有了水平向右的动量。根据冲量公式,跟安培力的冲量相联系的是时间内流经导体的电量。由平抛的高度与射程可依据动量定理求出,电容器最终带电量可求。解:先由电池向电容器充电,充得电量。之后电容器通过金属杆放电,放电电流是变化电流,安培力也是变力。根据动量定理:其中 =s/t,h=gt综合得 电容器最终带电量 点评:根据动量定理来研究磁场力冲量产生的效果,实际上就是电量和导体动量变化的关系,这是磁场中一种重要的问题类型。例2 图3-3-6中,无限长竖直向上的导线中通有恒定电流,已知由产生磁场的公式是,k为
6、恒量,r是场点到导线的距离。边长为2L的正方形线圈轴线与导线平行。某时刻线圈的ab边与导线相距2L。已知线圈中通有电流。求此时刻线圈所受的磁场力矩。I02LI2L图3-3-6分析:画俯视图如图3-3-7所示,先根据右手螺旋法则确定和的方向,再根据左手定则判断ab边受力和cd边受力的方向,然后求力矩。解:根据右手螺旋法则和左手定则确定和、和的方向,如图3-3-7所示。 , I02L2LB1F1F2B2图3-3-7对轴产生的力矩对轴产生的力矩 两个力矩俯视都是逆时针同方向的,所以磁场对线圈产生的力矩点评:安培力最重要的应用就是磁场力矩。这是电动机的原理,也是磁电式电流表的构造原理。一方面要强调三维模型简化为二维平面模型,另一方面则要强调受力边的受力方向的正确判断,力臂的确定,力矩的计算。本题综合运用多个知识点解决问题的能力层次是较高的,我们应努力摸索和积累这方面的经验。