收藏 分享(赏)

2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt

上传人:高**** 文档编号:417907 上传时间:2024-05-27 格式:PPT 页数:45 大小:5.11MB
下载 相关 举报
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第1页
第1页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第2页
第2页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第3页
第3页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第4页
第4页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第5页
第5页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第6页
第6页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第7页
第7页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第8页
第8页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第9页
第9页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第10页
第10页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第11页
第11页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第12页
第12页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第13页
第13页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第14页
第14页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第15页
第15页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第16页
第16页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第17页
第17页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第18页
第18页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第19页
第19页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第20页
第20页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第21页
第21页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第22页
第22页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第23页
第23页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第24页
第24页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第25页
第25页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第26页
第26页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第27页
第27页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第28页
第28页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第29页
第29页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第30页
第30页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第31页
第31页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第32页
第32页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第33页
第33页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第34页
第34页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第35页
第35页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第36页
第36页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第37页
第37页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第38页
第38页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第39页
第39页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第40页
第40页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第41页
第41页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第42页
第42页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第43页
第43页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第44页
第44页 / 共45页
2018届高考数学(文)大一轮复习课件:第二章第12讲导数与函数的极值、最值 .ppt_第45页
第45页 / 共45页
亲,该文档总共45页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第 12 讲 导数与函数的极值、最值第二章 基本初等函数、导数及其应用1函数的极值函数 yf(x)在点 xa 的函数值 f(a)比它在点 xa 附近其他点的 函 数 值 都 小,f(a)0;而 且 在 点 x a 附 近 的 左 侧_,右侧_,则点 a 叫做函数yf(x)的极小值点,f(a)叫做函数 yf(x)的极小值f(x)0f(x)0函数 yf(x)在点 xb 的函数值 f(b)比它在点 xb 附近其他点的 函 数 值 都 大,f(b)0;而 且 在 点 x b 附 近 的 左 侧_,右侧_,则点 b 叫做函数yf(x)的极大值点,f(b)叫做函数 yf(x)的极大值极大值点、极小值点统称

2、为极值点,极大值、极小值统称为极值f(x)0f(x)02函数的最值(1)在闭区间a,b上连续的函数 f(x)在a,b上必有最大值与最小值(2)若函数 f(x)在a,b上单调递增,则_为函数的最小值,_为函数的最大值;若函数 f(x)在a,b上单调递减,则_为函数的最大值,_为函数的最小值f(a)f(b)f(a)f(b)1辨明两个易误点(1)求函数极值时,误把导数为 0 的点作为极值点;(2)易混极值与最值,注意函数最值是个“整体”概念,而极值是个“局部”概念2明确两个条件一是 f(x)0 在(a,b)上成立是 f(x)在(a,b)上单调递增的充分不必要条件二是对于可导函数 f(x),f(x0)

3、0 是函数 f(x)在 xx0 处有极值的必要不充分条件1.教材习题改编 函数 f(x)的定义域为 R,导函数 f(x)的图象如图所示,则函数 f(x)()A无极大值点、有四个极小值点B有三个极大值点、一个极小值点C有两个极大值点、两个极小值点D有四个极大值点、无极小值点C 解析 设 f(x)的图象与 x 轴的 4 个交点从左至右依次为 x1、x2、x3、x4.当 x0,f(x)为增函数,当 x1xx2 时,f(x)0 时,x3.f(x)0 时,3x3,所以 f(x)在(,3),(3,)上是增函数,在(3,3)上是减函数 所以 f(x)极大值f(3)54.f(x)极小值f(3)54.故选 B.

4、3.教材习题改编 函数 f(x)13x34xm 在0,3上的最大值为4,则 m 的值为()A7 B283C3 D4D 解析 f(x)x24,x0,3,f(x)0 时,x2,f(x)0 时,0 x0 时,20,x(0,1所以 f(x)在(0,1上是增函数所以 f(x)maxf(1)e.e 函数的极值问题(高频考点)函数的极值是每年高考的热点,一般为中高档题,三种题型都有高考对函数极值的考查主要有以下三个命题角度:(1)由图判断函数极值的情况;(2)已知函数解析式求极值;(3)已知函数极值求参数值或范围典例引领(1)设函数 f(x)在定义域 R 上可导,其导函数为 f(x),若函数 y(1x)f(

5、x)的图象如图所示,则下列结论中一定成立的是()A函数 f(x)有极大值 f(2)和极小值 f(1)B函数 f(x)有极大值 f(2)和极小值 f(1)C函数 f(x)有极大值 f(2)和极小值 f(2)D函数 f(x)有极大值 f(2)和极小值 f(2)D(2)(2016高考山东卷)设 f(x)xln xax2(2a1)x,aR.令 g(x)f(x),求 g(x)的单调区间;已知 f(x)在 x1 处取得极大值,求实数 a 的取值范围【解】(1)由题图可知,当 x0;当 x2 时,f(x)0;当2x1 时,f(x)0;当 1x2 时,f(x)2 时,f(x)0.由此可得函数 f(x)在 x2

6、 处取得极大值,在 x2 处取得极小值故选 D.(2)由 f(x)ln x2ax2a,可得 g(x)ln x2ax2a,x(0,)则 g(x)1x2a12axx.当 a0 时,x(0,)时,g(x)0,函数 g(x)单调递增;当 a0 时,x0,12a 时,g(x)0,函数 g(x)单调递增,x12a,时,函数 g(x)单调递减 所以当 a0 时,g(x)的单调增区间为(0,);当 a0 时,g(x)的单调增区间为 0,12a,单调减区间为12a,.由知,f(1)0.1当 a0 时,f(x)单调递增,所以当 x(0,1)时,f(x)0,f(x)单调递增 所以 f(x)在 x1 处取得极小值,不

7、合题意 2当 0a1,由知 f(x)在0,12a 内单调递增,可得当 x(0,1)时,f(x)0.所以 f(x)在(0,1)内单调递减,在1,12a 内单调递增,所以 f(x)在 x1 处取得极小值,不合题意 3当 a12时,12a1,f(x)在(0,1)内单调递增,在(1,)内单调递减,所以当 x(0,)时,f(x)0,f(x)单调递减,不合题意 4当 a12时,0 12a0,f(x)单调递增,当 x(1,)时,f(x)12.题点通关角度一 由图判断函数极值的情况1函数 f(x)x3bx2cxd 的大致图象如图所示,则 x21x22等于()A89 B109C169D289C 解析 函数 f(

8、x)的图象过原点,所以 d0.又 f(1)0 且 f(2)0,即1bc0 且 84b2c0,解得 b1,c2,所以函数 f(x)x3x22x,所以 f(x)3x22x2,由题意知x1,x2 是函数的极值点,所以 x1,x2 是 f(x)0 的两个根,所以 x1x223,x1x223,所以 x21x22(x1x2)22x1x24943169.角度二 已知函数解析式求极值2f(x)(2xx2)ex 的极大值为_解析 f(x)(22x)ex(2xx2)ex(2x2)ex,由 f(x)0,得 x 2或 x 2.由 f(x)0,得 x 2.由 f(x)0,得 2x0,解得 x1;令 f(x)0,解得13

9、x0 时,f(x)0 或 f(x)0 恒成立的充要条件是(4)243a10,即 1612a0,解得 a43.综上,a 的取值范围为43,.函数的最值问题典例引领(2017昆明模拟)已知函数 f(x)(xk)ex.(1)求 f(x)的单调区间;(2)求 f(x)在区间0,1上的最小值【解】(1)由题意知 f(x)(xk1)ex.令 f(x)0,得 xk1.f(x)与 f(x)的情况如下:x(,k1)k1(k1,)f(x)0 f(x)ek1 所以,f(x)的单调递减区间是(,k1);单调递增区间是(k1,)(2)当 k10,即 k1 时,f(x)在0,1上单调递增,所以 f(x)在区间0,1上的最

10、小值为 f(0)k;当 0k11,即 1k2 时,f(x)在0,k1上单调递减,在k1,1上单调递增,所以 f(x)在区间0,1上的最小值为 f(k1)ek1;当 k11,即 k2 时,f(x)在0,1上单调递减,所以 f(x)在区间0,1上的最小值为 f(1)(1k)e.综上,当 k1 时,f(x)在0,1上的最小值为 f(0)k;当 1k0),若函数 f(x)在 x1 处与直线 y12相切(1)求实数 a,b 的值;(2)求函数 f(x)在1e,e 上的最大值解(1)f(x)ax2bx,因为函数 f(x)在 x1 处与直线 y12相切,所以f(1)a2b0,f(1)b12,解得a1,b12

11、.(2)由(1)知,f(x)ln x12x2,f(x)1xx1x2x,因为当1exe 时,令 f(x)0,得1ex1;令 f(x)0,得 10)的导函数 yf(x)的两个零点为3 和 0.(1)求 f(x)的单调区间;(2)若 f(x)的极小值为e3,求 f(x)在区间5,)上的最大值【解】(1)f(x)(2axb)ex(ax2bxc)ex(ex)2 ax2(2ab)xbcex.令 g(x)ax2(2ab)xbc,因为 ex0,所以 yf(x)的零点就是 g(x)ax2(2ab)xbc 的零点,且 f(x)与 g(x)符号相同 又因为 a0.所以当3x0,即 f(x)0,当 x0 时,g(x)

12、0,即 f(x)5f(0),所以函数 f(x)在区间5,)上的最大值是 5e5.(1)当连续函数在开区间内的极值点只有一个时,相应的极值点必为函数的最值点;(2)极值有可能是最值,但最值只要不在区间端点处取得,其必定是极值 已知函数 f(x)ax3bxc 在 x2 处取得极值为 c16.(1)求 a,b 的值;(2)若 f(x)有极大值 28,求 f(x)在3,3上的最小值解(1)因为 f(x)ax3bxc,所以 f(x)3ax2b.由于 f(x)在点 x2 处取得极值 c16,故有f(2)0,f(2)c16,即12ab0,8a2bcc16,解得a1,b12.(2)由(1)知 f(x)x312

13、xc,f(x)3x212.令 f(x)0,得 x12,x22.当 x(,2)时,f(x)0,故 f(x)在(,2)上为增函数 当 x(2,2)时,f(x)0,故 f(x)在(2,)上为增函数 由此可知 f(x)在 x12 处取得极大值 f(2)16c,在 x22 处取得极小值 f(2)c16.由题设条件知 16c28,得 c12,此时 f(3)9c21,f(3)9c3,f(2)c164,因此 f(x)在3,3上的最小值为 f(2)4.利用导数求函数的最值(本题满分 12 分)已知函数 f(x)ln xax(aR)(1)求函数 f(x)的单调区间;(2)当 a0 时,求函数 f(x)在1,2上的

14、最小值思维导图(1)f(x)1xa(x0),当 a0 时,f(x)1xa0,即函数 f(x)的单调增区间为(0,)(2 分)当 a0 时,令 f(x)1xa0,可得 x1a,当 0 x0;当 x1a时,f(x)1axx0,故函数 f(x)的单调递增区间为0,1a,单调递减区间为1a,.(4 分)(2)当1a1,即 a1 时,函数 f(x)在区间1,2上是减函数,所以 f(x)的最小值是 f(2)ln 22a.(5 分)当1a2,即 0a12时,函数 f(x)在区间1,2上是增函数,所以 f(x)的最小值是 f(1)a.(6 分)当11a2,即12a1时,函数f(x)在1,1a 上是增函数,在1a,2上是减函数又 f(2)f(1)ln 2a,所以当12aln 2 时,最小值是 f(1)a;当 ln 2a1 时,最小值为 f(2)ln 22a.(10 分)综上可知,当 0aln 2 时,函数 f(x)的最小值是a;当 aln 2 时,函数 f(x)的最小值是 ln 22a.(12 分)(1)本题考查求函数的单调区间,求函数在给定区间1,2上的最值,属常规题型(2)本题的难点是分类讨论考生在分类时易出现不全面,不准确的情况(3)思维不流畅,答题不规范,是解答中的突出问题本部分内容讲解结束 按ESC键退出全屏播放

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3