ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:719.50KB ,
资源ID:415953      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-415953-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022届高考数学理北师大版一轮复习测评:9-6 利用空间向量讨论平行与垂直 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022届高考数学理北师大版一轮复习测评:9-6 利用空间向量讨论平行与垂直 WORD版含解析.doc

1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心素养测评四十九利用空间向量讨论平行与垂直(30分钟60分)一、选择题(每小题5分,共25分)1.若直线l的方向向量为a=(1,0,2),平面的法向量为n=(-2,1,1),则 ()A.l B.l C.l或lD.l与斜交【解析】选C.因为a=(1,0,2),n=(-2,1,1),所以an=0,即an,所以l或l.2.在正方体ABCD-A1B1C1D1中,E,F分别在A1D,AC上,且A1E=A1D,AF=AC,则 ()A.EF至多与A1D,AC之一垂直B.EFA1D,E

2、FACC.EF与BD1相交D.EF与BD1异面【解析】选B.以D点为坐标原点,以DA,DC,DD1所在直线分别为x,y,z轴建立空间直角坐标系,设正方体棱长为1,则A1(1,0,1),D(0,0,0),A(1,0,0),C(0,1,0),E,F,B(1,1,0),D1(0,0,1),=(-1,0,-1),=(-1,1,0),=,=(-1,-1,1),=-,=0,从而EFBD1,EFA1D,EFAC.3.已知平面内有一点M(1,-1,2),平面的一个法向量为n=(6,-3,6),则下列点P中,在平面内的是()A.P(2,3,3) B.P(-2,0,1)C.P(-4,4,0)D.P(3,-3,4)

3、【解析】选A. 逐一验证法,对于选项A,=(1,4,1),所以n=6-12+6=0,所以n,所以点P在平面内,同理可验证其他三个点不在平面内.4.如图所示,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则: A1MD1P;A1MB1Q;A1M平面DCC1D1;A1M平面D1PQB1.以上说法正确的个数为()A.1B.2C.3D.4【解析】选C.=+=+,=+=+,所以,所以A1MD1P,由线面平行的判定定理可知,A1M平面DCC1D1,A1M平面D1PQB1.正确.5.如图,F是正方体ABCD-A1B1C1D1的棱CD的中点.

4、E是BB1上一点,若D1FDE,则有()世纪金榜导学号A.B1E=EBB.B1E=2EBC.B1E=EBD.E与B重合【解析】选A.分别以DA,DC,DD1为x,y,z轴建立空间直角坐标系,设正方体的棱长为2,则D(0,0,0),F(0,1,0),D1(0,0,2),设E(2,2,z),则=(0,1,-2),=(2,2,z),因为=02+12-2z=0,所以z=1,所以B1E=EB.二、填空题(每小题5分,共15分)6.若A0,2,B1,-1,C-2,1,是平面内的三点,设平面的法向量a=(x,y,z),则xyz=_.【解析】 =1,-3,-,=-2,-1,-,a=0,a=0,xyz=yy-y

5、=23(-4).答案: 23(-4)7.设平面与向量a=(-1,2,-4)垂直,平面与向量b=(-2, 4, -8)垂直,则平面与位置关系是_.【解析】因为2a=b,所以ab.因为平面与向量a垂直,所以平面与向量b也垂直.而平面与向量b垂直,所以.答案:平行8.如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E,F分别为AB,BC的中点.设异面直线EM与AF的夹角为,则cos 的最大值为_.世纪金榜导学号【解析】如图,建立空间直角坐标系,设正方形的边长为2,则A(0,0,0),F(2,1,0),E(1,0,0),设M(0,m,2)(0m2),则=(2,1,

6、0),=(1,-m,-2),cos =,令t=2-m(0t2),cos =.答案:三、解答题(每小题10分,共20分)9.已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.求证:(1)AM平面BDE.(2)AM平面BDF.【证明】(1)建立如图所示的空间直角坐标系,设ACBD=N,连接NE.则N,0,E(0,0,1),A(,0),M,1,所以=-,-,1,=-,-,1.所以=且NE与AM不共线.所以NEAM.又因为NE平面BDE,AM平面BDE,所以AM平面BDE.(2)由(1)知=-,-,1,因为D(,0,0),F(,1),所以=(0,1)所以=0,所

7、以AMDF.同理AMBF.又DFBF=F,所以AM平面BDF.10.在四棱锥P-ABCD中,PD底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.世纪金榜导学号(1)求证:EFCD.(2)在平面PAD内求一点G,使GF平面PCB,并证明你的结论.【解析】(1)如图,以DA,DC,DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设AD=a,则D(0,0,0)、A(a,0,0)、B(a,a,0)、C(0,a,0)、Ea,0、P(0,0,a)、F,.=-,0,=(0,a,0).因为=0,所以,即EFCD.(2)设G(x,0,z),则=x-,-,z-,若使GF平面PC

8、B,则由=x-,-,z-(a,0,0)=ax-=0,得x=;由=x-,-,z-(0,-a,a)=+az-=0,得z=0.所以G点坐标为,0,0,即G点为AD的中点.(15分钟35分)1.(5分)正方体ABCD-A1B1C1D1的棱长为a,点M在AC1上且=,N为B1B的中点,则|为()A.aB.aC.aD.a【解析】选A.以D为原点建立如图所示的空间直角坐标系,则A(a,0,0),C1(0,a,a),Na,a,.设M(x,y,z),因为点M在AC1上且=,所以(x-a,y,z)=(-x,a-y,a-z),所以x=a,y=,z=,得M,所以|=a.2.(5分)给出下列命题:直线l的方向向量为a=

9、(1,-1,2),直线m的方向向量b=,则l与m垂直;直线l的方向向量a=(0,1,-1),平面的法向量n=(1,-1,-1),则l;平面,的法向量分别为n1=(0,1,3),n2=(1,0,2),则;平面经过三点A(1,0,-1),B(0,1,0),C(-1,2,0),向量n=(1,u,t)是平面的法向量,则u+t=1.其中真命题是_.(把你认为正确的命题的序号都填上)【解析】对于,因为a=(1,-1,2),b=(2,1,-),所以ab=12-11+2=0,所以ab,所以直线l与m垂直,正确;对于,a=(0,1,-1),n=(1,-1,-1),所以an=01+1(-1)+(-1)(-1)=0

10、,所以an,所以l或l,错误;对于,因为n1=(0,1,3),n2=(1,0,2),所以n1与n2不共线,所以不成立,错误;对于,因为点A(1,0,-1),B(0,1,0),C(-1,2,0),所以=(-1,1,1),=(-1,1,0),向量n=(1,u,t)是平面的法向量,所以,即,则u+t=1,正确.综上,真命题的序号是.答案:3.(5分)在正方体ABCD-A1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N分别为AB,BC的中点,点Q为平面ABCD内一点,线段D1Q与OP互相平分,则满足=的实数有_个.【解析】建立如图所示的坐标系,设正方体的棱

11、长为2,P点坐标为(x,y,2),则O(1,1,0),所以OP的中点坐标为,1,又知D1(0,0,2),D1Q的中点也是OP中点,所以Q(x+1,y+1,0),而Q在MN上,所以xQ+yQ=3,由=得所以x+y=1,即点P坐标满足x+y=1,由于P点在四边上,所以有2个符合题意的点P,即对应有2个.答案:24.(10分)如图所示,已知直三棱柱ABC-A1B1C1中,ABC为等腰直角三角形,BAC=90,且AB=AA1,D,E,F分别为B1A、C1C、BC的中点.求证:世纪金榜导学号(1)DE平面ABC.(2)B1F平面AEF.【证明】(1)建立如图所示的空间直角坐标系,令AB=AA1=4,则A

12、(0,0,0),E(0,4,2),F(2,2,0),B(4,0,0),B1(4,0,4).取AB的中点N,连接CN,则N(2,0,0),C(0,4,0),D(2,0,2),所以=(-2,4,0),=(-2,4,0),所以=,所以DENC,又因为NC平面ABC,DE平面ABC.故DE平面ABC.(2)由(1)知=(-2,2,-4),=(2,-2,-2),=(2,2,0).=(-2)2+2(-2)+(-4)(-2)=0,=(-2)2+22+(-4)0=0.所以,即B1FEF,B1FAF,又因为AFFE=F,所以B1F平面AEF.5.(10分)如图,在棱长为a的正方体ABCD-A1B1C1D1中,点

13、E是棱D1D的中点,点F在棱B1B上,且满足B1F=2BF.世纪金榜导学号(1)求证:EFA1C1.(2)在棱C1C上确定一点G,使A,E,G,F四点共面,并求此时C1G的长.【解析】(1)以点D为坐标原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则A(a,0,0)、A1(a,0,a)、C1(0,a,a)、E、F,所以=(-a,a,0),=,因为=-a2+a2+0=0,所以,所以A1C1EF.(2)设G(0,a,h),因为平面ADD1A1平面BCC1B1,平面ADD1A1平面AEGF=AE,平面BCC1B1平面AEGF=FG,所以FGAE,所以存在实数,

14、使得=,因为=,=,所以=,所以=1,h=a,所以C1G=CC1-CG=a-a=a,故当C1G=a时,A,E,G,F四点共面.1.在直三棱柱ABC-A1B1C1中,BACA, A1A=BA=CA,点M,N分别是AC,AB的中点,过点C作平面,使得A1M,B1N,若B1C1=P,则的值为世纪金榜导学号()A.B.C.D.【解析】选B.因为AB,AC, AA1两两垂直,所以以A为原点,以AB,AC, AA1所在直线为x,y,z轴,建立空间直角坐标系,设AB=2,则=(0,1,-2),=(-1,0,-2),设=,则=+=(0,0,2)+(2,-2,0)=,因为A1M,B1N,所以存在实数x,y,使得

15、=x+y,由向量相等的充要条件得消去x,y得+=2,所以=,即=.2.在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动,则直线D1E与A1D夹角的大小是_,若D1EEC,则AE=_.世纪金榜导学号【解析】长方体ABCD-A1B1C1D1中以D为原点,DA所在直线为x轴,DC所在直线为y轴,DD1所在直线为z轴,建立空间直角坐标系,又AD=AA1=1,AB=2,点E在棱AB上移动,则D(0,0,0),D1(0,0,1),A(1,0,0),A1(1,0,1),C(0,2,0),设E(1,m,0),0m2,则=(1,m,-1),=(-1,0,-1),所以=-1+0+1=0,所以直线D1E与A1D夹角的大小是90,因为=(1,m,-1),=(-1,2-m,0),D1EEC,所以=-1+m(2-m)+0=0,解得m=1,所以AE=1.答案: 901关闭Word文档返回原板块

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3