收藏 分享(赏)

山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析).doc

上传人:高**** 文档编号:415368 上传时间:2024-05-27 格式:DOC 页数:16 大小:1.26MB
下载 相关 举报
山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析).doc_第1页
第1页 / 共16页
山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析).doc_第2页
第2页 / 共16页
山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析).doc_第3页
第3页 / 共16页
山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析).doc_第4页
第4页 / 共16页
山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析).doc_第5页
第5页 / 共16页
山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析).doc_第6页
第6页 / 共16页
山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析).doc_第7页
第7页 / 共16页
山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析).doc_第8页
第8页 / 共16页
山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析).doc_第9页
第9页 / 共16页
山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析).doc_第10页
第10页 / 共16页
山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析).doc_第11页
第11页 / 共16页
山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析).doc_第12页
第12页 / 共16页
山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析).doc_第13页
第13页 / 共16页
山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析).doc_第14页
第14页 / 共16页
山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析).doc_第15页
第15页 / 共16页
山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析).doc_第16页
第16页 / 共16页
亲,该文档总共16页,全部预览完了,如果喜欢就下载吧!
资源描述

1、山东省泰安市泰山国际学校2021届高三数学10月月考试题(含解析)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1. 已知全集,集合,集合,则A. B. C. D. 【答案】C【解析】【详解】全集U=1,2,3,4,5,集合,则.故选:C.2. 已知集合,则等于( )A. B. C. D. 【答案】C【解析】【分析】计算,再计算交集得到答案.【详解】,则.故选:C.【点睛】本题考查了解指数不等式,交集运算,属于简单题.3. 下列函数中是偶函

2、数,且在区间(0,+)上是减函数的是( )A. B. C. D. 【答案】B【解析】【分析】根据函数表达式,判断f(x)和f(-x)的关系,得到奇偶性,再依次判断单调性即可得到结果.【详解】A.,函数是偶函数,在上是增函数,故不正确;B. ,是偶函数,在区间上是减函数,故正确;C. ,是奇函数,故不正确;D. ,是偶函数,但是在上是增函数,故不正确;故答案为B.【点睛】这个题目考查了函数的奇偶性和单调性,函数奇偶性的判断,先要看定义域是否关于原点对称,接着再按照定义域验证和 的关系,函数的单调性,一般小题直接判断函数在所给区间内是否连续,接着再判断当x变大时y的变化趋势,从而得到单调性.4.

3、已知奇函数在区间上是增函数,且最大值为,最小值为,则在区间上的最大值、最小值分别是( )A. B. C. D. 不确定【答案】A【解析】【分析】根据奇函数得性质可确定结果.【详解】因为奇函数关于原点对称,所以当在区间上是增函数,且最大值为,最小值为时, 在区间上的最大值、最小值分别是,选A.【点睛】本题考查利用奇函数性质求最值,考查基本分析求解能力,属基础题.5. 已知集合A=,B=,若“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】化简两个集合,分别讨论充分性和必要性,可选出答案.【详解】由题意,集合,充分性:若,则

4、,满足,即“”是“”的充分条件;必要性:若,集合,此时符合;集合,此时,解得.故时,即“”不是“”的必要条件.所以“”是“”的充分不必要条件.故选:A.【点睛】本题考查充分不必要条件,考查不等式的解法,考查集合的包含关系,考查学生的计算能力与逻辑推理能力,属于基础题.6. 命题“,”的否定为( )A. “,”B. “,”C. “,”D. “,”【答案】A【解析】【分析】直接利用全称命题的否定为特称命题得到答案.【详解】全称命题的否定为特称命题,故命题“,”的否定为,.故选:A.【点睛】本题考查了全称命题的否定,属于简单题.7. 已知实数均为正数,满足,则的最小值是 A. 10B. 9C. D.

5、 【答案】B【解析】【分析】利用基本不等式求得,则,展开后再利用基本不等式可求得的最小值【详解】,当且仅当时,取等号则,当且仅当时,且,时,的最小值为9,故选B【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用或时等号能否同时成立).8. 函数是偶函数,且函数的图象关于点成中心对称,当时,则( )A. B. C. 0D. 2【答案】D【解

6、析】【分析】由是偶函数以及图象关于点成中心对称,可得到个关于的等式,将两个等式联立化简,可证明是个周期函数,即可计算的值.【详解】根据题意,函数是偶函数,则函数的对称轴为,则有,又由函数的图象关于点成中心对称,则,则有,即,变形可得,则函数是周期为8的周期函数,;故选D【点睛】本题考查函数的对称性:(1)若,则的对称轴是:;(2)若,则的对称中心是.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求)9. 下列说法正确的是( )A. 若ab,cd,则a-cb-dB. 若,则abC. 若,则D. 若,则【答案】BC【解析】【分析】取特殊值排除AD,

7、利用不等式性质判断BC正确,得到答案.【详解】取,则,A错误;,故,则,B正确;,故,故,C正确;取,不成立,D错误.故选:BC.【点睛】本题考查了不等式性质,意在考查学生的推断能力,取特殊值排除是解题的关键.10. 已知函数满足,且是奇函数,则下列说法正确是( )A. 是奇函数B. 是周期函数C. D. 是奇函数【答案】BCD【解析】【分析】根据奇函数和周期函数的性质进行判断.【详解】, 关于点对称,令, 有,且是由向左平移1个单位得到,关于对称,所以是奇函数;又是奇函数,所以关于对称,所以 则, 所以, 即是以4为一个周期的函数,综上,选项BCD正确,A错误.故选:BCD.【点睛】本题考查

8、周期函数和奇函数的性质,属于基础题.11. 定义:若函数在区间上的值域为,则称区间是函数的“完美区间”,另外,定义区间的“复区间长度”为,已知函数,则( )A. 是一个“完美区间”B. 是的一个“完美区间”C. 的所有“完美区间”的“复区间长度”的和为D. 的所有“完美区间”的“复区间长度”的和为【答案】AC【解析】【分析】根据定义,当时求得的值域,即可判断A;对于B,结合函数值域特点即可判断;对于C、D,讨论与两种情况,分别结合定义求得“复区间长度”,即可判断选项.【详解】对于A,当时,则其值域为,满足定义域与值域的范围相同,因而满足“完美区间”定义,所以A正确;对于B,因为函数,所以其值域

9、为,而,所以不存在定义域与值域范围相同情况,所以B错误;对于C,由定义域为,可知,当时,此时,所以在内单调递减,则满足,化简可得,即,所以或,解得(舍)或,由解得或(舍),所以,经检验满足原方程组,所以此时完美区间为,则“复区间长度”为;当时,若,则,此时.当在的值域为,则,因为 ,所以,即满足,解得,(舍).所以此时完美区间为,则“复区间长度”为;若,则,此时在内单调递增,若的值域为,则,则为方程的两个不等式实数根,解得, 所以,与矛盾,所以此时不存在完美区间.综上可知,函数的“复区间长度”的和为,所以C正确,D错误;故选:AC.【点睛】本题考查了函数新定义综合应用,由函数单调性判断函数的值

10、域,函数与方程的综合应用,分类讨论思想的综合应用,属于难题.12. 已知函数,若直线与交于三个不同的点(其中),则的可能值为( )A. 1B. 2C. 3D. 4【答案】BC【解析】【分析】根据导数的几何意义求出曲线在时切线的斜率,然后根据题意分别求出的取值范围,进而选出正确答案.【详解】在时,设切点的坐标为:,因此有,所以切线方程为:,当该切线过原点时,所以切点的坐标为:,因为直线与交于三个不同点, 所以有,当切线与直线相交时,解方程组:,因此有,于是有,所以,显然选项BC符合,故选:BC【点睛】本题考查好已知两曲线交点的个数求参数的到值范围,考查了导数的几何意义,考查了数学运算能力.第II

11、卷(非选择题)三、填空题13. 方程的解是_.【答案】【解析】【分析】化简方程得到,设,解方程考虑对数函数定义域得到答案.【详解】,即,即,设,即,则,解得或(舍去),即,.故答案为:.【点睛】本题考查了解对数,指数方程,意在考查学生的计算能力和转化能力,忽略定义域是容易发生的错误.14. 已知定义在上的奇函数,若,则实数的取值范围是_.【答案】【解析】【分析】先根据奇函数求出的值,然后分析 单调性并由函数值之间的关系转变为自变量之间的关系,最后求出的范围.【详解】因为是定义在上的奇函数,所以,则;又因为与在上递增,所以由可得: ,故,即.【点睛】(1)奇函数在处有定义时,必定有;(2)通过函

12、数的单调性,可以将函数值之间的关系转为自变量之间的关系(注意定义域),从而完成对自变量范围的求解.15. 当时,恒成立,求实数的取值范围是_.【答案】【解析】【分析】变换得到,再利用均值不等式计算最值得到答案.【详解】,则,故,当时等号成立.故,故.故答案为:.【点睛】本题考查了二次不等式恒成立问题,意在考查学生的计算能力和转化能力,参数分离结合均值不等式是解题的关键.16. 给出下列结论:;,y的值域是;函数的图像过定点;若恒成立,则的取值范围是;其中正确的序号是_.【答案】【解析】【分析】依次判断每个选项:计算知错误;取得到错误,带入数据计算知正确,错误,得到答案.【详解】,错误;取,错误

13、;当时,正确;,则,错误.故答案为:【点睛】本题考查了指数幂的计算,二次函数值域,指数函数过定点问题,解对数不等式,意在考查学生对于函数知识的综合应用能力,忽略定义域是容易发生的错误.四、解答题17. 已知集合,.当时,求实数a的取值范围.【答案】【解析】【分析】先解一元二次不等式求得集合,对对应的一元二次不等式的解集分为空集和不是空集两种情况,结合二次函数零点分布以及子集的知识列不等式组,解不等式组求得的取值范围.【详解】依题意可知当时,即,得.当时,设,则.综上所述,实数的取值范围是.【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式和对应二次函数的关系,考查二次函数零点分布问

14、题,考查集合子集的概念和知识的运用,考查分类讨论的数学思想方法,属于中档题.18. 讨论函数(a0)在的单调性并证明.【答案】答案见解析【解析】【分析】根据定义法证明函数单调性,即在函数的定义域内任取,且,可通过作差法比较和大小,即可得到单调性【详解】在函数的定义域内任取,且则 故 故在上是单调增函数.【点睛】本题考查了用定义法证明函数单调性.在用定义法证明函数单调时要注意在所给定义内要任取两个自变量,化简表达式, 时单调递增, 时单调递减.19. 求下列最值:(1)当时,求函数的最大值;(2)设求函数的最大值.【答案】(1);(2)【解析】【分析】(1)变换,再利用均值不等式计算得到答案.(

15、2)变换,再利用均值不等式计算得到答案.【详解】(1),则,当,即时等号成立.(2),当,即时等号成立.【点睛】本题考查了利用均值不等式求最值,意在考查学生的转化能力,合理变形是解题的关键.20. 已知定义域为的函数,是奇函数.(1)求,的值;(2)若对任意的,不等式恒成立,求实数的取值范围.【答案】(1);(2)【解析】【分析】(1)先由求出,然后由求出(2)由得在上为减函数,然后将不等式化为即可.【详解】(1)因为是上的奇函数,所以,即,解得.从而有.又由知,解得.经检验,当时,满足题意(2)由(1)知,由上式易知在上为减函数,又因为是奇函数,从而不等式等价于.因为是上的减函数,由上式推得

16、.即对一切有,从而,解得.【点睛】本题主要考查的是利用函数的奇偶性和单调性解不等式,较为典型.21. 已知函数.(1)若 ,试求函数的最小值;(2)对于任意的,不等式成立,试求a的取值范围.【答案】(1)最小值为;(2).【解析】【分析】(1)由利用基本不等式即可求得函数的最小值; (2)由题意可得不等式成立”只要“在恒成立”不妨设,则只要在0,2恒成立结合二次函数的图象列出不等式解得即可【详解】解:(1)依题意得.因为x0,所以 .当且仅当,即时,等号成立.所以.故当时,的最小值为 .(2)因为,所以要使得“任意的,不等式成立”,只要“在上恒成立”.不妨设,则只要在上恒成立.所以 即解得.所

17、以a的取值范围是.【点睛】本题主要考查了基本不等式的应用,以及恒成立问题等,考查学生的运算求解能力,属于中档题22. 若定义在R上的函数f(x)同时满足下列三个条件:对任意实数均有成立;当x0时,都有f(x)0成立.(1)求f(0),f(8)的值;(2)求证:f(x)为R上的增函数;(3)求解关于x的不等式.【答案】(1),;(2)证明见解析;(3)【解析】【分析】(1)分别取,带入计算得到答案.(2)取,得到,得到证明.(3)化简得到,再利用函数单调性解得答案.【详解】(1)取,则,;取,则.(2)取,则,故,即,函数单调递增.(3),即,即,函数单调递增,故,解得.故解集为.【点睛】本题考查了求函数值,证明抽象函数单调性,利用函数单调性解不等式,意在考查学生对于函数性质的综合应用能力.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3