ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:332.50KB ,
资源ID:39162      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-39162-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2.4《向量的数量积(1)》教案(苏教版必修4).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2.4《向量的数量积(1)》教案(苏教版必修4).doc

1、2.4 向量的数量积(1)一、课题:向量的数量积(1)二、教学目标:1理解平面向量数量积的概念;2掌握两向量夹角的概念及其取值范围;3掌握两向量共线及垂直的充要条件;4掌握向量数量积的性质。三、教学重、难点:向量数量积及其重要性质。 四、教学过程:(一)引入:物理课中,物体所做的功的计算方法:(图1)(其中是与的夹角)(二)新课讲解:1向量的夹角:已知两个向量和(如图2),作,则(图2)()叫做向量与的夹角。当时,与同向;当时,与反向;当时,与的夹角是,我们说与垂直,记作2向量数量积的定义:已知两个非零向量和,它们的夹角为,则数量叫做与的数量积(或内积),记作,即说明:两个向量的数量积是一个数

2、量,这个数量的大小与两个向量的长度及其夹角有关;实数与向量的积与向量数量积的本质区别:两个向量的数量积是一个数量;实 数与向量的积是一个向量;规定,零向量与任一向量的数量积是3数量积的几何意义:(1)投影的概念:如图,过点作垂直于直线,垂足为,则叫做向量在方向上的投影,当为锐角时,它是正值;当为钝角时,它是一负值;当时,它是;当时,它是;当时,它是(2)的几何意义:数量积等于的长度与在的方向上的投影的乘积。【练习】:已知,与的夹角,则;已知,在上的投影是,则 8 ;已知,则与的夹角(3)数量积的性质:设、都是非零向量,是与的夹角,则;当与同向时,;当与反向时,;特别地:或;若是与方向相同的单位向量,则4例题分析:例1 已知正的边长为,设,求解:如图,与、与、与夹角为, 原式 例2 已知,且,求解:作, , , 且, 中, ,所以,五、课后练习: 补充:1若非零向量与满足,则 0 六、课堂小结:1向量数量积的概念; 2向量数量积的几何意义; 3向量数量积的性质。七、作业:- 3 -

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3