ImageVerifierCode 换一换
格式:DOC , 页数:2 ,大小:58KB ,
资源ID:38658      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-38658-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2.3《数学归纳法》教案(新人教选修2-2).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2.3《数学归纳法》教案(新人教选修2-2).doc

1、高考资源网提供高考试题、高考模拟题,发布高考信息题本站投稿专用信箱:ks5u,来信请注明投稿,一经采纳,待遇从优 普通高中课程标准实验教科书数学选修2-2人教版A 2.3.1数学归纳法教学目标:了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。 教学重点:了解数学归纳法的原理 教学过程一、 复习:推理与证明方法二、 引入新课1、数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(kN*,kn0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法2、 数学归纳法的基本思想:即先验证使结论有意

2、义的最小的正整数n0,如果当n=n0时,命题成立,再假设当n=k(kn0,kN*)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n0的正整数n0+1,n0+2,命题都成立.3、用数学归纳法证明一个与正整数有关的命题的步骤:(1)证明:当n取第一个值n0结论正确;(2)假设当n=k(kN*,且kn0)时结论正确,证明当n=k+1时结论也正确.由(1),(2)可知,命题对于从n0开始的所有正整数n都正确 4、例子例1用数学归纳法证明:如果an是一个等差数列,那么an=a1+(n1)d对一切nN*都成立. 例2用数学归纳法

3、证明例3判断下列推证是否正确,若是不对,如何改正.证明:当n=1时,左边右边,等式成立设n=k时,有 那么,当n=k+1时,有即n=k+1时,命题成立根据问可知,对nN,等式成立课堂练习:第80页练习课后作业:第82页A:1,2,3 普通高中课程标准实验教科书数学选修2-2人教版 2.3.2数学归纳法应用举例教学目标:能用数学归纳法证明一些简单的数学命题。 教学重点:能用数学归纳法证明一些简单的数学命题 教学过程三、 复习:1、数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(kN*,kn0)时命题成立,证明当n=

4、k+1时命题也成立这种证明方法就叫做数学归纳法2、 数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n0,如果当n=n0时,命题成立,再假设当n=k(kn0,kN*)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n0的正整数n0+1,n0+2,命题都成立.3、用数学归纳法证明一个与正整数有关的命题的步骤:(1)证明:当n取第一个值n0结论正确;(2)假设当n=k(kN*,且kn0)时结论正确,证明当n=k+1时结论也正确.由(1),(2)可知,命题对于从n0开始的所有正整数n都正确四、 引入新课例1用数学归纳法证明例2用数学归纳法证明:x2ny2n ()能被x+y整除例3平面内有n(n2)条直线,其中任何两条不平行,任何三条不过同一点,证明交点的个数为f(n)= .例4 对一切自然数n,猜出使成立的最小自然数t并用数学归纳法证明课堂练习:第82页练习A,B课后作业:第82页A:4,5共2页第2页

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3