1、第十五章统计第1讲随机抽样1(2013年湖南)某学校有男、女学生各500名为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A抽签法 B随机数法C系统抽样法 D分层抽样法 2用系统抽样法(按等距离的规则),要从160名学生中抽取容量为20的样本,将160名学生从1160编号按编号顺序平均分成20组(18号,916号,153160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是()A7 B5C4 D33(2012年四川)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四
2、个社区做分层抽样调查假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A101 B808C1212 D20124为了解参加一次知识竞赛的3204名学生的成绩,决定采用系统抽样的方法抽取一个容量为80的样本,那么总体中应随机剔除的个体数目是()A2 B3C4 D55某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1
3、,2,270,使用系统抽样时,将学生统一随机编号为1,2,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:7,34,61,88,115,142,169,196,223,250;5,9,100,107,111,121,180,195,200,265;11,38,65,92,119,146,173,200,227,254;30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是()A、都不能为系统抽样 B、都不能为分层抽样C、都可能为系统抽样 D、都可能为分层抽样6(2013年浙江模拟)学校高中部共有学生2000名,高中部各年级男
4、、女生人数如下表,已知在高中部学生中随机抽取1名学生,抽到高三年级女生的概率是0.18,现用分层抽样的方法在高中部抽取50名学生,则应在高二年级抽取的学生人数为()高一级高二级高三级女生人数/人373yx男生人数/人327z340A.14人 B15人C16人 D17人7(2012届广东惠州第三次调研)为了保证食品安全,现采用分层抽样的方法对某市场的甲、乙、丙、丁四个厂家生产的奶粉进行检测,若甲、乙、丙、丁四个厂家生产的奶粉分别为120袋、100袋、80袋、60袋,已知甲、乙两个厂家抽取的袋数之和为22袋,则四个厂家一共抽取_袋8(2012年福建)一支田径队有男女运动员98人,其中男运动员有56
5、人按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_人9某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:文艺节目新闻节目总计2040岁/人401858大于40岁/人152742总计5545100(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率10(2012年广东韶关第二次调研)某中学在校就餐的高一年级学生有440名,高二
6、年级学生有460名,高三年级学生有500名为了解学校食堂的服务质量情况,用分层抽样的方法从中抽取70名学生进行抽样调查,把学生对食堂的“服务满意度”与“价格满意度”都分为5个等级:1级(很不满意);2级(不满意);3级(一般);4级(满意);5级(很满意),其统计结果如下表(服务满意度为x,价格满意度为y):价格满意度12345服务满意度111220221341337884414641501231(1)求高二年级共抽取学生人数;(2)求“服务满意度”为3时的5个“价格满意度”数据的方差;(3)为提高食堂服务质量,现从x3且2y4的所有学生中随机抽取两人征求意见,求至少有一人的“服务满意度”为1
7、的概率第十五章统计第1讲随机抽样1D2.B3.B4C解析:因为320480404,所以应随机剔除4个个体,故选C.5D6B解析:因为高中部学生中随机抽取1名学生,抽到高三年级女生的概率是0.18,所以0.18,解得x360.所以高一人数为373327700(人),高三人数为360340700(人),所以高二人数为2000700700600(人)所以高一、高二、高三的人数比为700600700767,所以利用分层抽样从高中部抽取50人,则应在高二抽取的人数为505015(人)736812解析:设应抽取的女运动员人数是x,则,易得x12.9解:(1)由于大于40岁的42人中有27人收看新闻节目,而
8、20至40岁的58人中,只有18人收看新闻节目,故收看新闻节目的观众与年龄有关(2)273,大于40岁的观众应抽取3名(3)由题意知,设抽取的5名观众中,年龄在20岁至40岁的为a1,a2,大于40岁的为b1,b2,b3,从中随机取2名,基本事件有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3),共10个,设恰有1名观众年龄在20至40岁为事件A,则A中含有基本事件6个:(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),P(A).10解:
9、(1)共有1400名学生,高二级抽取的人数为7023(人)(2)“服务满意度为3”时的5个数据的平均数为6,所以方差s24.4.(3)符合条件的所有学生共7人,其中“服务满意度为2”的4人记为a,b,c,d,“服务满意度为1”的3人记为x,y,z.在这7人中抽取2人有如下情况:(a,b),(a,c),(a,d),(a,x),(a,y),(a,z),(b,c),(b,d),(b,x),(b,y),(b,z),(c,d),(c,x),(c,y),(c,z),(d,x),(d,y),(d,z),(x,y),(x,z),(y,z),共21种情况其中至少有一人的“服务满意度为1”的情况有15种所以至少有一人的“服务满意度”为1的概率为p.