ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:78.50KB ,
资源ID:372720      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-372720-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《复习参考》2015年高考数学(理)提升演练:正弦定理和余弦定理.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《复习参考》2015年高考数学(理)提升演练:正弦定理和余弦定理.doc

1、2015届高三数学(理)提升演练:正弦定理和余弦定理一、选择题1在ABC中,A60,B75,a10,则c()A5B10C. D52已知ABC中,sin Asin Bsin C11,则此三角形的最大内角的度数是()A60 B90C120 D1353在ABC中,角A、B、C所对的边分别为a、b、c.若acos Absin B,则sin Acos Acos2B()A B.C1 D14若ABC的内角A、B、C所对的边a、b、c满足(ab)2c24,且C60,则ab的值为()A. B84C1 D.5在ABC中,内角A,B,C的对边分别是a,b,c.若a2b2bc,sin C2sin B,则A()A30

2、B60C120 D1506在ABC中,D为边BC的中点,AB2,AC1,BAD30,则AD的长度为()A. B.C. D2二、填空题7在ABC中,若b5,B,sin A,则a_.8在ABC中,角A、B、C的对边分别为a、b、c,S是ABC的面积,且4Sa2b2c2,则角C_.9已知ABC的一个内角为120,并且三边长构成公差为4的等差数列,则ABC的面积为_三、解答题10ABC的内角A、B、C的对边分别为a、b、c,asin Acsin Casin Cbsin B.(1)求B;(2)若A75,b2,求a,c.11在ABC中,内角A,B,C的对边分别为a,b,c.已知.(1)求的值;(2)若co

3、s B, b2,求ABC的面积S.12已知向量m(sin A,)与n(3,sin Acos A)共线,其中A是ABC的内角(1)求角A的大小;(2)若BC2,求ABC的面积S的最大值,并判断S取得最大值时ABC的形状详解答案:1解析:由于ABC180,所以C180607545.由正弦定理,得ca10.答案:C2解析:在ABC中,sin Asin Bsin Cabc,abc11,设abk,ck(k0),最大边为c,其所对的角C为最大角,则cos C,C120.答案:C3解析:acos Absin B,sin Acos Asin2B,sin Acos Acos2Bsin2Bcos2B1.答案:D4

4、解析:由(ab)2c24,得a2b2c22ab4.由余弦定理得a2b2c22abcos C2abcos 60ab,将代入得ab2ab4,即ab.答案:A5解析:由sin C2sin B可得c2b,由余弦定理得cos A,于是A30.答案: A6解析:延长AD到M,使得DMAD,连接BM、MC,则四边形ABMC是平行四边形在ABM中,由余弦定理得BM2AB2AM22ABAMcosBAM,即1222AM222AMcos 30,解得AM,所以AD.答案:B7解析:根据正弦定理,得a.答案:8解析:由4Sa2b2c2,得2S.所以absin C,sin Ccos C,所以tan C1.C.答案:9解析

5、:不妨设角A120,cb,则ab4,cb4,于是cos 120,解得b10,所以Sbcsin 12015.答案:1510解:(1)由正弦定理得a2c2acb2.由余弦定理得b2a2c22accos B.故cos B,因此B45.(2)sin Asin(3045)sin 30cos45cos 30sin 45.故ab1.cb2.11解:(1)由正弦定理得,设k,则,.即(cos A2cos C)sin B(2sin Csin A)cos B,化简可得sin(AB)2sin(BC)又ABC,所以sin C2sin A.因此2.(2)由2得c2a.由余弦定理b2a2c22accos B及cos B,b2,得4a24a24a2.解得a1,从而c2.又因为cos B,且0B,所以sin B,因此Sacsin B12.12解:(1)因为mn,所以sin A(sin Acos A)0,所以sin 2A0,即sin 2Acos 2A1,即sin(2A)1.因为A(0,),以2A(,)故2A,即A.(2)由余弦定理,得4b2c2bc,又SABCbcsin Abc,而b2c22bcbc42bcbc4(当且仅当bc时等号成立),所以SABCbcsin Abc4,当ABC的面积最大时,bc,又A,故此时ABC为等边三角形

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3