1、课时分层作业(十二)两角和与差的正弦(建议用时:40分钟)一、选择题1sin 255()ABCDBsin 255sin 75sin(4530).2sin 45cos 15cos 45sin 15的值为()ABCDBsin 45cos 15cos 45sin 15sin(4515)sin 60,故选B3在ABC中,2cos Bsin Asin C,则ABC的形状一定是()A等边三角形B等腰三角形C直角三角形D不确定B在ABC中,C(AB),2cos Bsin Asin(AB)sin(AB)sin Acos Bcos Asin Bsin Acos Bcos Asin B0.即sin(BA)0.AB
2、4.()A1B1 C DA1.5函数f (x)sin(x2)2sin cos(x)的最大值为()AB1 CD2Bf (x)sin(x2)2sin cos(x)sin(x)2sin cos(x)sin(x)cos cos(x)sin 2sin cos(x)sin(x)cos cos(x)sin sin(x)sin x,f (x)的最大值为1.二、填空题6要使sin cos 有意义,则实数m的取值范围是_sin cos 2sin,2sin,sin,1,解得1m.7(一题两空)当x时,函数f (x)sin xcos x的最大值为_,最小值为_21f (x)sin xcos x222sin.x,x,s
3、in1,即1f (x)2.8已知关于x的方程sin xcos xk0在x0,上有解,则实数k的取值范围为_,1sin xcos xk0,sin xcos xk,即sink.又0x,x,1sin.1k,即k1.三、解答题9已知cos(),sin(),且,求sin 2.解,.,.又,0,则sin.sin(),cos().sin 2sinsin()cos()cos()sin().10若函数f (x)(1tan x)cos x,0x.(1)把f (x)化成Asin(x)的形式;(2)判断f (x)在上的单调性,并求f (x)的最大值解(1)f (x)(1tan x)cos xcos xcos xcos
4、 xsin x222sin.(2)0x,x,由x,得x.f (x)在上是单调增函数,在上是单调减函数当x时,f (x)有最大值为2.1cossin()A0BCD2C原式222sin2sin.2已知函数f asin 2xcos 2x的图象关于直线x对称,若f f 4,则a的最小值为()A B C D2Bf (x)的图象关于直线x对称,f (0)f ,即a,a1,则f (x)sin 2xcos 2x2sin,f (x1)f (x2)4,f (x1)2,f (x2)2或f (x1)2,f (x2)2,即f (x1),f (x2)一个为最大值,一个为最小值,则|x1x2|的最小值为,T,|x1x2|的最小值为,即a的最小值为.故选B3已知cossin ,则sin的值是_cos sin sin ,sin cos ,sin,sinsinsin.4sin 50(1tan 10)_.1原式sin 50sin 502sin 501.5已知cos ,sin(),且,.求:(1)sin(2)的值;(2)的值解(1)因为,所以,又sin()0,所以0.所以sin ,cos(),sin(2)sin()sin cos()cos sin().(2)sin sin()sin cos()cos sin(),又因为,所以.