ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:1.34MB ,
资源ID:358118      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-358118-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(四川省绵阳南山中学2018-2019学年高一数学6月月考试题(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

四川省绵阳南山中学2018-2019学年高一数学6月月考试题(含解析).doc

1、四川省绵阳南山中学2018-2019学年高一数学6月月考试题(含解析)一、选择题.1.下列命题中正确的是( )A. B. C. D. 单位向量都相等【答案】C【解析】【分析】根据向量相等的定义和平行向量的定义推导.【详解】对于选项A,模长相等的向量不一定是相等的向量,所以错误.对于B,由于向量不能比较大小,错误.对于选项C,由于向量相等,则可以知道他们必定共线,成立,对于D,由于单位向量方向不相同,则不相等,错误,故选C.【点睛】本题考查向量相等定义:模相等,方向相同;平行向量的定义:方向相同或相反,属于基础题.2.若,则下列不等式成立的是( )A. B. C. D. 【答案】C【解析】【分析

2、】根据不等式的性质对每一个选项进行证明,或找反例进行排除.【详解】解:选项A:取,此时满足条件,则,显然,所以选项A错误;选项B:取,此时满足条件,则,显然,所以选项B错误;选项C:因为,所以,因为,所以,选项C正确;选项D:取,当,则,所以,所以选项D错误;故本题选C.【点睛】本题考查了不等式的性质,熟知不等式的性质是解题的关键.3.等差数列前项和为,若,则( )A. 52B. 54C. 56D. 58【答案】A【解析】分析:由题意,根据等差数列的性质先求出,再根据数列中项的性质求出S13的值详解:因为等差数列,且, ,即 又,所以故选A.点睛:本题考查等差数列的性质,熟练掌握性质,且能做到

3、灵活运用是解答的关键4.若,其中为的内角所对的边,则的形状为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不确定【答案】B【解析】【分析】根据正弦定理将中的边化为角,再由两角和的正弦公式、诱导公式求得,可得,然后对三角形的形状作出判断【详解】由及正弦定理得,又在中,为直角三角形故选A【点睛】判断三角形的形状可以根据边的关系判断,也可以根据角的关系判断,故常用的方法有两种:一是根据余弦定理,进行角化边;二是根据正弦定理,进行边化角5.平面与平面平行的条件可以是( )A. 内有无数多条直线都与平行B. 直线,且C. 直线,且直线不在内,也不在内D. 一个平面内两条不平行的直线都平行于

4、另一个平面【答案】D【解析】【分析】利用可能相交,判断,利用面面平行的判定定理判断选项.【详解】对于,内有无数多条直线都与平行,则可能相交,错;对于,直线,且,则可能相交,错;对于,直线,且直线不在内,也不在内, ,则可能相交,错;对于,一个平面内两条不平行的直线必相交,根据平面与平面平行的判定定理可知正确故选D【点睛】本题主要考查了平面与平面平行的判定定理,意在考查对基本定理的掌握情况,属基础题6.在数列中,则A. B. C. D. 【答案】A【解析】试题分析:在数列中,故选A.考点:熟练掌握累加求和公式及其对数的运算性质7.在如图的正方体中,分别为棱和棱的中点,则异面直线和所成的角为( )

5、A. B. C. D. 【答案】C【解析】试题分析:连接BC1,AD1,因为MN/BC1/AD1,所以就是异面直线AC和MN所成的角,因为为等边三角形,所以.考点:异面直线所成的角.点评:找异面直线所成的角:一是选点,二是平移,三是转化为相交直线所成的角.本小题汲及到中点,联想到中位线,所以连接AD1,就可找出就是异面直线AC和MN所成的角.8.已知向量,若,则的最小值为( )A. 12B. C. 15D. 【答案】B【解析】【分析】因为,所以对向量坐标运算,得到,根据=可构造出基本不等式的形式,利用基本不等式求出结果.【详解】共线,即,所以=,当且仅当时等号成立.【点睛】本题考查平面向量平行

6、的坐标运算,均值定理求最小值,考查数学的转化能力,属于基础题.9.某几何体的三视图如图所示,则它的体积为( )A. B. C. 15D. 【答案】A【解析】【分析】由三视图还原几何体,得到几何体为正方体中放置一个倒立的圆锥,根据正方体和圆锥的体积公式求几何体的体积即可.【详解】由题意可知该几何体是正方体中放置一个倒立的圆锥,那么可知其底面半径为1,高度为2,那么其体积,选A【点睛】本题考查由三视图还原几何体及几何体的体积公式,属于基础题.10.在中,则的取值范围是( )A. B. C. 或D. 或【答案】B【解析】【分析】设(),利用余弦定理建立关于x的函数,从而求出B的范围.【详解】解:设,

7、则,由余弦定理可得,根据余弦函数的性质可知,,故选B.【点睛】本题考查三角形已知两边求角范围,余弦定理的应用,三角形的构成条件,基本不等式,考查学生的转化能力和运算能力,属于中档题.11.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D. 【答案】B【解析】分析:作图,D为MO 与球的交点,点M为三角形ABC的重心,判断出当平面时,三棱锥体积最大,然后进行计算可得。详解:如图所示,点M为三角形ABC的重心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的重心中,有故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三

8、角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型。12.如图,在中,设,的中点为,的中点为,的中点为,若,则( )A. B. C. D. 1【答案】C【解析】【分析】根据平面向量基本定理及其几何意义,结合条件可得及,解方程可求得,即可得到m,n的值,所以得到结果.【详解】解:由题意可得,由解方程求得.再由可得.【点睛】本题考查向量的基底表示,向量共线,考查学生的运算能力,观察能力,属于中档题.二、填空题。13.已知关于的不等式的解集是,则不等式的解集是_【答案】【解析】【分析】通过的解集

9、可以确定与的关系以及,代入所求不等式,化简为,求解不等式得到结果.【详解】由的解集是可知:和是方程的两根且 又 【点睛】本题考查一元二次不等式与一元二次方程之间的关系,关键在于通过解集确定方程的根,属于基础题.14.设满足约束条件,则的最小值为_ 【答案】【解析】【分析】先画出约束条件所代表的平面区域,再画出目标函数并平移目标函数确定最优解的位置,求出最优解代入目标函数求出最值即可.【详解】解:先画出约束条件所代表的平面区域,如图中阴影然后画出目标函数如图中过原点虚线所示平移目标函数,在点处取得最小值由,解得所以目标函数最小值为故答案为:.【点睛】本题考查了简单线性规划问题,平移目标函数时由目

10、标函数中前系数小于0,故向上移越移越小.15.我国古代数学家刘微在九章算术注释中指出:“凡望极高、测绝深而兼知极远者,必用重差.”也就是说目标“极高”“绝深”等不能靠近进行测量时,必须用两次(或两次以上)测量的方法加以实现,为测量某山的高度,在测得的数据如图所示(单位:),则到山顶的距离_【答案】【解析】【分析】根据图形,可得中各个角的度数,又知AB的长度,由正弦定理可求出AM的长.【详解】如图: 所以,.所以,在中,由正弦定理可知:,即,即.【点睛】本题考查三角形正弦定理的应用,属于基础题.16.设函数是公差为的等差数列,则_【答案】【解析】由已知,是公差为的等差数列,则,由和差化积公式得,

11、则,比较两边等式得,且,解得,所以.三、解答题.17.已知,且向量与不共线.(1)若与的夹角为,求;(2)若向量与的夹角的钝角,求实数的取值范围.【答案】(1) (2) 且【解析】【分析】(1)因为与的夹角为,所以可求得.展开代入即可求得结果. (2)由向量与的夹角的钝角,可得且不反向共线,展开解k即可.【详解】解:(1)与的夹角为,.(2)向量与的夹角为钝角,且不能反向共线,解得实数的取值范围是且 .【点睛】本题考查平面向量数量积的运算,考查已知向量夹角求参,考查向量夹角为钝角的求解运算,考查了学生转化的能力,属于基础题.18.已知的内角的对边分别为,且.(1)求的值;(2)若,求的面积的最

12、大值.【答案】(1);(2).【解析】【分析】(1)由,可得,化为,可得,可得;(2),再利用基本不等式的性质可得,利用即可得出【详解】(1),化为:,可得(2),可得,当且仅当取等号,当且仅当时,的面积的最大值为【点睛】本题考查了正弦定理余弦定理、三角形面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题19.如图所示,正三棱锥高为2,点是的中点,点是的中点. (1)证明:平面;(2)若三棱锥体积为,求该正三棱柱的底面边长.【答案】(1)证明见解析;(2).【解析】【分析】(1)连接,推导出,由此能证明平面1(2)由,作交于点,由正三棱柱的性质,得平面1,设底面正三角形边长为

13、,则三棱锥的高,由此能求出该正三棱柱的底面边长【详解】(1)如图,连接,因为是的中点,是的中点, 所以在中,, 平面, 平面, 所以平面. (2)解:由等体积法,得,因为是的中点,所以点到平面的距离是点,到平面的距离的一半.如图,作交于点,由正三棱柱的性质可知,平面.设底面正三角形的边长,则三棱锥的高, ,所以,解得,所以该正三棱柱的底面边长为.【点睛】本题考查线面平行的证明,考查正三棱锥底面边长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题20.已知正项数列的前项和为,满足.(

14、)(i)求数列的通项公式;(ii)已知对于,不等式恒成立,求实数的最小值;() 数列的前项和为,满足,是否存在非零实数,使得数列为等比数列? 并说明理由.【答案】(1) ()() (2)见解析【解析】【分析】(1)()由知,作差求得,得到数列为等差数列,求得.()由等差数列前n项和公式得到,对取倒,得到,裂项相消求得,从而得到M的最小值. ()由()可知,所以得到,求解数列得到,检验,所以不存在.【详解】解:(1)()时,又,当时,.作差整理得:,数列的等差数列,.()由()知,不等式恒成立,实数的最小值是.(2)由,知,当时,当时,数列是等比数列,与矛盾,不存在非零实数,使得数列为等比数列.【点睛】本题考查数列求通项公式知求,考查数列裂项相消求和,考查等比数列的证明,考查了学生的计算能力,属于中档题.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3